بهره‌برداری بهینه خودروهای الکتریکی و منابع تولید پراکنده در شبکه توزیع هوشمند

نویسندگان

1 دانشکده مهندسی - دانشگاه فردوسی مشهد

2 دانشکده مهندسی انرژی - دانشگاه صنعتی شریف

چکیده

حضور گسترده انواع منابع تولیدات پراکنده و خودروهای الکتریکی در شبکه‌های توزیع می‌تواند چالش‌ها و فرصت‌های گوناگونی را برای شبکه برق ایجاد نماید. چالش‌هایی در راستای عملکرد فنی و اقتصادی شبکه‌های برق و فرصت‌هایی برای به‌کارگیری آن‌ها به‌عنوان یک منبع انرژی الکتریکی. بر این‌ اساس در این مقاله یک چارچوب برنامه‌ریزی دومرحله‌ای به‌منظور مدیریت هم‌زمان تعداد زیادی خودروی الکتریکی و منابع تولید پراکنده با مالکیت خصوصی در مرحله اول با هدف افزایش سود خودروهای الکتریکی و منابع تولید پراکنده و درنهایت با هدف کاهش هزینه‌های بهره‌برداری معرفی و مورد بررسی قرار گرفته است. چارچوب برنامه‌ریزی پیشنهادی بر روی یک شبکه توزیع متصل‌شده به باس 5 از شبکه نمونه  آزمایش شده است. جهت حل مسئله و انتخاب جواب بهینه از روش بهینه‌سازی CPLEX استفاده شده است. نتایج نشان داده‌اند که مدیریت مناسب خودروهای الکتریکی و منابع تولید پراکنده به‌عنوان یک نهاد کارآمد موجب بهره‌مندی اقتصادی صاحبان خودروهای الکتریکی، منابع تولید پراکنده و شبکه می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal utilization of electric vehicles and DG resources in smart distribution system

نویسندگان [English]

  • M. Shafiee 1
  • R. Ghazi 1
  • M. Moeini Aghtaie 2
1 Department of Electrical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Energy Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

The widespread growing of the distributed generation (DG) and electric vehicles (EVs) in distribution networks could be a variety of challenges and opportunities for the electricity network. Despite of arising various technical and economic challenges in distribution networks, these two important events can provide opportunities as electrical energy resources. Accordingly, in this paper, a two-stage scheduling framework has been presented and investigated to manage a large number of electric vehicles in the presence of DGs firstly with the aim of increasing the profits of electric vehicles and DGs and ultimately aimed at reducing operating costs. The proposed scheduling framework is tested on a distribution network connected to 5 bus RBTS system. In order to solve the problem and choose the best solution the CPLEX optimization method is used. The results show that by proper management of electric vehicles and distributed generation resources as an efficient tool, the owners of electric vehicles, distributed generation resources and network all can benefit.

کلیدواژه‌ها [English]

  • electric vehicle
  • distributed generation resources
  • aggregator
  • uncertainty
[1] S. Shafiee, M. Fotuhi-Firuzabad, and M. Rastegar, "Investigating the Impacts of Plug-in Hybrid Electric Vehicles on Power Distribution Systems," IEEE Transactions on Smart Grid, vol. 4, pp. 1351-1360, 2013.
[2] P.H. Divshali, B.J. Choi, “Electrical market management considering power system constraints in smart distribution grids,” Energies, vol. 9, 2016.
[3] P. Papadopoulos, N. Jenkins, L. M. Cipcigan, I. Grau, and E. Zabala, "Coordination of the Charging of Electric Vehicles Using a Multi-Agent System," IEEE Transactions on Smart Grid, vol. 4, pp. 1802-1809, 2013.
[4] K. Clement-Nyns, E. Haesen, and J. Driesen, "The impact of vehicle-to-grid on the distribution grid," Electric Power Systems Research, vol. 81, pp. 185-192, 2011.
[5] A. S. Masoum, S. Deilami, A. Abu-Siada, and M. A. S. Masoum, "Fuzzy Approach for Online Coordination of Plug-In Electric Vehicle Charging in Smart Grid," IEEE Transactions on Sustainable Energy, vol. 6, pp. 1112-1121, 2015.
[6] Scott, M.J, .et al., Impacts assessment of plug-in hybrid vehicles on electric utilities and regional US power grids: Part 2: economic assessment. Pacific Northwest National Laboratory (a), 2007.
[7] B. Falahati, Y. Fu, Z. Darabi, and L. Wu, "Reliability assessment of power systems considering the large-scale PHEV integration," IEEE Vehicle Power and Propulsion Conference, pp. 1-6, 2011.
[8] مهدی تورانی، محمدرضا آقاابراهیمی و حمیدرضا نجفی، "برنامه ریزی شارژ و دشارژ خودروهای الکتریکی در ریزشبکه بر پایه مسافرت روزانه خودروها"، مجله مهندسی برق دانشگاه تبریز، جلد ۴۶، شماره ۴، زمستان 95.
[9] مهدی تورانی، محمدرضا آقاابراهیمی و حمیدرضا نجفی، "برنامه ریزی محدوده پارکینگ خودروهای الکتریکی و شارژ و دشارژ آن به‌منظور بهبود قابلیت اطمینان در شبکه‌های هوشمند"، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، تابستان 96.
[10] H. Farzin, M. Moeini-Aghtaie, and M. Fotuhi-Firuzabad, "Reliability Studies of Distribution Systems Integrated With Electric Vehicles Under Battery-Exchange Mode," IEEE Transactions on Power Delivery, vol. 31, pp. 2473-2482, 2016.
[11] J. Kiviluoma and P. Meibom, "Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles," Energy, vol. 36, pp. 1758-1767, 2011.
[12] H. Turton and F. Moura, "Vehicle-to-grid systems for sustainable development: An integrated energy analysis," Technological Forecasting and Social Change, vol. 75, pp. 1091-1108, 2008.
[13] K. Clement-Nyns, E. Haesen, and J. Driesen, “The impact of charging plug-in hybrid electric vehicles on a residential distribution grid,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 371–380, 2010.
[14] C. Pang, M. Kezunovic and M. Ehsani, “Demand side management by using electric vehicles as distributed energy resources,” Proc. of IEEE Electric Vehicle Conf. (IEVC), Greenville, SC, March 2012.
[15] Nafisi, H., H. Askarian Abyaneh, and M. Abedi, Energy loss minimization using PHEVs as distributed active and reactive power resources: a convex quadratic local optimal solution. International Transactions on Electrical Energy Systems, 2015.
[16] H. Nafisi, S. M. M. Agah, H. A. Abyaneh, and M. Abedi, "Two-Stage Optimization Method for Energy Loss Minimization in Microgrid Based on Smart Power Management Scheme of PHEVs," IEEE Transactions on Smart Grid, vol. 7, pp. 1268-1276, 2016.
[17] Q. D. Van, J. H. Bae, J. D. Lee, and S. J. Lee, “Monitoring of Power Allocation in Centralized Electric Vehicle Charging Spot System,” Journal of Energy Procedia, vol. 17, pp. 1542-1549, 2012.
[18] O. Sundstrom, and C. Binding, “Flexible Charging Optimization for Electric Vehicles Considering Distribution Grid Constraints,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 26-37, March 2012.
[19] Z. Luo, Z. Hu, and et al, “Optimal Coordination of Plug-In Electric Vehicles in Power Grids With Cost-Benefit Analysis—Part I: Enabling Techniques,”  IEEE Trans. Power Systems, vol. 28, no. 4, pp. 3546-3555, Nov. 2013.
[20] Z. Luo, Z. Hu, and et al, “Optimal Coordination of Plug-In Electric Vehicles in Power Grids With Cost-Benefit Analysis —Part II: A Case Study in China,”  IEEE Trans. Power Systems, vol. 28, no. 4, pp. 3556-3565, Nov. 2013.
[21] K. M. Tan, V. K. Ramachandaramurthy, and J. Y. Yong, "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, vol. 53, pp. 720-732, 2016.
[22] M. J. E. Alam, K. M. Muttaqi, and D. Sutanto, "Effective Utilization of Available PEV Battery Capacity for Mitigation of Solar PV Impact and Grid Support With Integrated V2G Functionality," IEEE Transactions on Smart Grid, vol. 7, pp. 1562-1571, 2016.
[23] P. Kou, D. Liang, L. Gao, and F. Gao, "Stochastic Coordination of Plug-In Electric Vehicles and Wind Turbines in Microgrid: A Model Predictive Control Approach," IEEE Transactions on Smart Grid, vol. 7, pp. 1537-1551, 2016.
[24] M. F. Shaaban, and E. F. El-Saadany, “Accommodating High Penetrations of PEVs and Renewable DG Considering Uncertainties in Distribution Systems,”  IEEE Trans. Power Systems, vol. 29, pp. 259-270, 2014.
[25] T. Wu, Q. Yang, Z. Bao, and W. Yan, “Coordinated Energy Dispatching in Microgrid With Wind Power Generation and Plug-in Electric Vehicles,”  IEEE Trans. Smart Grid, vol. 4, pp. 1453-1463, 2013.
[26] Zakariazadeh, Alireza, Shahram Jadid, and Pierluigi Siano. "Integrated operation of electric vehicles and renewable generation in a smart distribution system." Energy Conversion and Management, vol. 89 pp. 99-110, 2015.
[27] M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, and P. Dehghanian, "Optimized Probabilistic PHEVs Demand Management in the Context of Energy Hubs," IEEE Transactions on Power Delivery, vol. 30, pp. 996-1006, 2015.
[28] M. Honarmand, A. Zakariazadeh, and S. Jadid, "Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid," Energy Conversion and Management, vol. 86, pp. 745-755, 2014.
[29] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, "Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization," IEEE Transactions on Power Systems, vol. 25, pp. 360-370, 2010.
[30] A. Yona, T. Senjyu, and T. Funabashi, "Application of Recurrent Neural Network to Short-Term-Ahead Generating Power Forecasting for Photovoltaic System," IEEE Power Engineering Society General Meeting, pp. 1-6, 2007.
[31] G.Boyle, Renewable energy, Oxford, U.K.: Oxford Univ, Press, 2004.
[32] B. S. Borowy and Z. M. Salameh, "Optimum photovoltaic array size for a hybrid wind/PV system," IEEE Transactions on Energy Conversion, vol. 9, pp. 482-488, 1994.
[33] D. Bertsimas and J. N. Tsitsiklis, “Introduction to Linear Optimizat ion,” 1997.
[34] R. Billinton and S. Jonnavithula, "A test system for teaching overall power system reliability assessment," IEEE Transactions on Power Systems, vol. 11, pp. 1670-1676, 1996.
[35] C. Chen, S. Duan, T. Cai, B. Liu, and G. Hu, "Smart energy management system for optimal microgrid economic operation," IET Renewable Power Generation, vol. 5, pp. 258-267, 2011.
[36] S. W. Hadley and A. A. Tsvetkova, "Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation," The Electricity Journal, vol. 22, pp. 56-68, 2009.
[37] N. M. M. Razali and A. H. Hashim, "Backward reduction application for minimizing wind power scenarios in stochastic programming," International Power Engineering and Optimization Conference, pp. 430-434, 2010.