ارائه روشی جدید به‌منظور بهینه‌سازی چندهدفه سیستم ترکیبی مستقل از شبکه فتوولتائیک/دیزل ژنراتور با در نظر گرفتن عدم‌قطعیت و رزرو

نویسندگان

پژوهشکده انرژی - پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی - دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

چکیده

در این مقاله، یک چارچوب برای بهینه‌سازی چندهدفه سیستم ترکیبی فتوولتائیک/دیزل ژنراتور (PV/DG) ارائه شده است. این مطالعه طراحی سیستم PV/DG را با اهداف کاهش هزینه، کاهش آلایندگی و افزایش قابلیت اطمینان دنبال می‌کند. هزینه خالص فعلی (TNPC)، آلایندگی دی‌اکسیدکربن و احتمال ازدست‌دادن منبع تغذیه (LPSP) به‌عنوان توابع هدف مسئله انتخاب‌شده‌اند. این سیستم در سه وضعیت 1- بدون در نظر گرفتن عدم‌قطعیت و رزرو، 2- با در نظر گرفتن عدم‌قطعیت و 3- با در نظر گرفتن عدم‌قطعیت و رزرو بررسی شده است. به‌منظور حل مؤثر این مسئله بهینه‌سازی، نسخه چندهدفه الگوریتم جستجوی کلاغ (MO-CSA) توسعه داده‌شده و نتایج شبیه‌سازی با نتایج حاصل از الگوریتم پرطرفدار ژنتیک مبتنی بر رتبه‌بندی نامغلوب II (NSGA-II)  مقایسه شده است. کدنویسی مسئله در محیط نرم‌افزار متلب انجام‌گرفته و مرزهای پارتو حاصل از بررسی سیستم در هر یک از سه وضعیت مذکور با یکدیگر مقایسه شده است. نتایج حاصل نشان می‌دهند که ترکیب دیزل ژنراتور و سیستم فتوولتائیک گزینه مناسبی برای تحقق اهداف در نظر گرفته شده و تأمین توان الکتریکی مناطق مستقل از شبکه است. ضمن آن‌که الگوریتم جستجوی کلاغ چندهدفه نتایج بهتری نسبت به الگوریتم ژنتیک مبتنی بر رتبه‌بندی نامغلوب II پیدا می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

A novel approach for multi-objective optimization of standalone PV/DG hybrid system with considering uncertainty and operating reserve

نویسندگان [English]

  • Z. Movahediyan
  • A. Askarzadeh
Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

In this paper, a framework for multi-objective optimization of a hybrid photovoltaic/diesel generator (PV/DG) system has been presented. This study follows the design of the PV/DG system at the lowest cost, lowest emission and highest reliability.The total net present cost (TNPC), CO2 emissions and the loss of power supply probability (LPSP) are selected asthe problem objectives. This system has been designed in three scenarios: 1- without considering uncertainty and operating reserve, 2- with considering uncertainties of the system and 3- with considering uncertainties of the system and using DG as operating reserve. In order to effectively solve this problem, multi-objective versionof crow search algorithm (MO-CSA) has been developed and the results are compared with the results obtained by well-known non-dominated sorting genetic algorithm II (NSGA-II). The coding of the problem has been done in MATLAB environment and the Pareto fronts have been compared. Simulation results indicate that combination of DG and PV is a promising alternative for supplying the electrical demand of stand-alone areas. Moreover, the results obtained by MO-CSA outperform the results obtained by NSGA-II.

کلیدواژه‌ها [English]

  • hybrid photovoltaic/diesel system
  • multi-objective optimization
  • crow search algorithm
[1] B. Wichert, M. Dymond, W. Lawrance and T. Friese, “Development of a test facility for photovoltaic- diesel hybrid energy systems,” Renew. Energy, vol. 22, no. 1-3, pp. 311-319, 2001
[2] M. Ashari and C. V. Nayar, “An optimum dispatch strategy using set points for a photovoltaic (PV)-diesel-battery hybrid power system,” Sol. Energy , vol. 66, no. 1, pp. 1-9, 1999.
[3] A. Askarzadeh, “Electrical power generation by an optimised autonomous PV/wind/tidal/battery system,” IET Renew. Power Gener, vol. 11, no. 1, pp. 152-164, 2017.
[4] M. B. Shadmand and R. S. Balog, “Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2635-2643, 2014.
[5] J. Zhao and X. Yuan, “Multi-objective optimization of stand-alone hybrid PV-wind-diesel-battery system using improved fruit fly optimization algorithm,” Soft Computing, vol. 20, no. 7, pp. 2841-2853, 2016.
[6] A. Yahiaoui, K. Benmansour and M. Tadjine, “Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria,” Sol. Energy, vol. 137, pp. 1-10, 2016.
[7] A. S. O. Ogunjuyigbe, T. R. Ayodele and O. A. Akinola, “Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building,”  Appl. Energy, vol. 171, pp. 153–171, 2016.
[8] D. Tsuanyo, Y. Azoumah, D. Aussel and P. Neveu, “Modeling and optimization of batteryless hybrid PV (photovoltaic)/diesel systems for off-grid applications,” Energy, vol. 86, pp. 152–163, 2015.
[9] M. Hossain, S. Mekhilef and L. Olatomiwa, “Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China sea, Malaysia,” Sustain Cities Soc, vol. 28, pp. 358–366, 2017.
[10] A. Maheri, “Multi-objective design optimisation of standalone hybrid wind– PV–diesel systems under uncertainties,” Renew. Energy, vol. 66, pp. 650–661, 2014.
[11] M. A. M. Ramli, A. Hiendro and S. Twaha, “Economic analysis of PV/diesel hybrid system with flywheel energy storage,” Renew. Energy, vol. 78, pp. 398–405, 2015.
[12] R. D. Lopez and J. L. B. Agustin, “Multi-objective design of PV–wind–diesel– hydrogen–battery systems,” Renew. Energy, vol. 33, no. 12, pp. 2559–2572, 2008.
[13] L. G. Acuña, R. V. Padilla and A. S. Mercado, “Measuring reliability of hybrid photovoltaic-wind energy systems: A new indicator,” Renew. Energy, 2017.
[14] T. Tezer, R. Yaman, G. Yaman, “Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 840-853, 2017.
[15] ح. شکری و س. نجفی روادانق، «حل مسئله مشارکت بهینه واحدهای نیروگاهی در حضور منابع انرژی تجدیدپذیر»، مجلهمهندسی برق دانشگاه تبریز، دوره 45، شماره 1، صفحه 29-42، بهار 1394.
[16]  س. ج. سید شنوا و ن. افسری اردبیلی، « مدیریت بهینه تولید در یک سیستم تولید انرژی ترکیبی چندمنبعی جدا از شبکه با حضور سیستمهای ذخیره ساز انرژی به‌منظور کاهش هزینه تقاضا»، مجلهمهندسی برق دانشگاه تبریز، دوره 47، شماره 3، صفحه 1110-1099، پاییز 1396.
[17] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Comput. Struct, vol. 169, pp. 1–12, 2016.
[18] X. Li, Y. J. Song, S. B. Han, “Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller,” J. Power. Sources, vol. 180, pp. 468-475, 2008.
[19] R. Dufo-López, J. L. Bernal-Agustín, J. M.  Yusta-Loyo, J. A. Domínguez-Navarro, I. J. Ramírez-Rosado, J. Lujano and I. Aso, “Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage,” Appl. Energy, vol. 88, pp. 4033-4041, 2011.
[20] L. K. Gan, J. K. H. Shek and M. A. Mueller, “Hybrid wind–photovoltaic–diesel–battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland,” Energy Conversion and Management, vol. 106, pp. 479–494, 2015.
[21] K. Y. Lau, M. F. M. Yousof, S. N. M. Arshad, M. Anwari and A. H. M. Yatim, “Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions,” Energy, vol. 35, no. 8, pp. 3245-3255, 2010.
[22] A. A skarzadeh, “Capacitor placement in distribution systems for power loss reduction and voltage improvement: a new methodology,” IET Generation, Transmission & Distribution, vol. 10, no. 14,  pp. 3631–3638, 2016.
[23] T. Okabe, Y Jin, B Sendhoff, “A critical survey of performance indexes for multi-objective optimization,” In: Proceedings of the 2003 congress on evolutionary computation, vol. 2, pp. 878–885, 2003.