شیلد الکترومغناطیسی تنظیم‌پذیر بر پایه ساختارهای متناوب گرافنی در فرکانس‌های تراهرتز

نویسندگان

دانشکده مهندسی برق - دانشگاه بوعلی‌سینا

چکیده

با کشف ماده دوبعدی گرافن، ساخت و پیاده‌سازی مدارهای الکترونیکی در فرکانس‌های تراهرتز و نوری سرعت بیشتری پیدا کرده است. بنابراین مبحث شیلد الکترومغناطیسی در مدارهای تراهرتز و کاهش اثرات مخرب بخش‌های مختلف مدار بر یکدیگر حائز اهمیت است. در این مقاله با استفاده از ساختارهای متناوب گرافنی، دو نوع شیلد الکترومغناطیسی در فرکانس تراهرتز پیشنهاد می‌شود. باتوجه به قابلیت تنظیم‌پذیری رسانایی در گرافن، می‌توان شیلدهای پیشنهادی را در فرکانس کاری موردنظر تنظیم کرد. برای تسریع محاسبات ضریب کارایی شیلد، ابتدا مدلی مداری به فرم بسته برای ساختار گرافنی پیشنهاد شده و سپس با استفاده از روش خط انتقال کارایی شیلد محاسبه می‌شود. مقایسه نتایج به‌دست‌آمده با نتایج حاصل از نرم‌افزار تجاری CST-MWS دقت و سرعت بالای روش خط انتقال را نشان می‌دهد. در انتها تأثیر عواملی مانند تعداد لایه‌ها، ضخامت لایه‌های SiO2، پهنای نوارهای گرافن، فاصله بین دو سلول گرافن، تأثیر انرژی فرمی‌های مختلف و تابش مایل بر کارایی شیلد ساختارهای پیشنهادی مورد بحث قرار گرفته است که باعث می‌شود اطلاعات جامعی برای طراحی شیلد در اختیار خوانندگان محترم قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Tunable Electromagnetic Shield Using Periodic Graphene-Based Structures in the Terahertz Regime

نویسندگان [English]

  • E. Dejband
  • H. Karami
  • M. Hosseini
1- Department of Electrical Engineering, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Since graphene discovery, designing and implementation of electronic circuits have been developed in the THz and optical frequencies to achieve ultrafast responses. Thus, electromagnetic shielding due to its protection effects against disturbances caused by adjacent elements has emerged as a vital issue in circuit designing. In this paper, two types of electromagnetic shields are proposed in the THz regime. Regarding the adjustability of graphene’s conductivity, one can easily tune the frequency response in order to adapt it with the frequency range in which their circuit works. In order to accelerate the computation of shield efficiency factor, firstly an equivalent circuit model is proposed as a closed-form expression, and then shield efficiency can be achieved using transmission line model. Comparisons indicate that the results derived from the proposed method are in high accordance with those of CST-MWS commercial software. Finally the effects of the number of layers, the thickness of SiO2 layers, the width of graphene ribbons, the gap between the two individual cells, Fermi energies, and oblique incident on the shielding effectiveness of the proposed structure are discussed in details for interesting readers.

کلیدواژه‌ها [English]

  • Electromagnetic shield
  • periodic graphene-based structures
  • graphene
  • terahertz regime
  • equivalent circuit model
[1] پرویز امیری؛ محمود صیفوری؛ بابک آفرین؛ آوا هدایتی‌پور، « طراحی پیش تقویت‌کننده RGC کم نویز مدار مجتمع CMOS با پهنای باند 20 GHz و بهره 60 dB0»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2- شماره پیاپی 76، صفحه 15-23، تابستان 1395.
[2] مهران نظری؛ جواد یاوند حسنی، «طراحی یک تقویت‌کننده کم‌نویز کسکود ولتاژ پایین با خطینگی بالا به کمک روش تزویج مغناطیسی در باند 45 GHz»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2 - شماره پیاپی 80، صفحه 751-760، تابستان 1396.
[3] M. Arjmand, T. Apperley, M. Okoniewski, and U. Sundararaj, "Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites," Carbon, vol. 50, pp. 5126-5134, 2012.
[4] M.-S. Cao, X.-X. Wang, W.-Q. Cao, and J. Yuan, "Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding," Journal of Materials Chemistry C, vol. 3, pp. 6589-6599, 2015.
[5] T. Niu, W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, et al., "Experimental demonstration of reflectarray antennas at terahertz frequencies," Optics express, vol. 21, pp. 2875-2889, 2013.
[6] R. Parvaz and H. Karami, "Far-infrared multi-resonant graphene-based metamaterial absorber," Optics Communications, vol. 396, pp. 267-274, 2017.
[7] M. Roshanaei, E. Dezhband, H. Karami, and R. Parvaz, "Multi resonance perfect absorber based on graphene micro ribbons." META 2016 CONFERENCE, MALAGA, 25 – 28 JULY 2016.
[8] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, "Graphene based electrochemical sensors and biosensors: a review," Electroanalysis, vol. 22, pp. 1027-1036, 2010.
[9] P. K. Ang, W. Chen, A. T. S. Wee, and K. P. Loh, "Solution-gated epitaxial graphene as pH sensor," Journal of the American Chemical Society, vol. 130, pp. 14392-14393, 2008.
[10] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, et al., "A graphene-based broadband optical modulator," Nature, vol. 474, pp. 64-67, 2011.
[11] A. Rycerz, J. Tworzydło, and C. Beenakker, "Valley filter and valley valve in graphene," Nature Physics, vol. 3, pp. 172-175, 2007.
[12] J. T. Kim and S.-Y. Choi, "Graphene-based plasmonic waveguides for photonic integrated circuits," Optics express, vol. 19, pp. 24557-24562, 2011.
[13] A. G. D'Aloia, M. D'Amore, and M. S. Sarto, "Terahertz shielding effectiveness of graphene-based multilayer screens controlled by electric field bias in a reverberating environment," IEEE Transactions on Terahertz Science and Technology, vol. 5, pp. 628-636, 2015.
[14] I. Baek, K. Ahn, B. Kang, S. Bae, B. Hong, D.-I. Yeom, et al., "Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene," Applied Physics Letters, vol. 102, p. 191109, 2013.
[15] S. J. Orfanidis, Electromagnetic waves and antennas: Rutgers University New Brunswick, NJ, 2002.
[16] A. Yakovlev, G. Hanson, and A. Mafi, "High-impedance surfaces with graphene patches as absorbing structures at microwaves," Proc. Metamaterials 2009, 2009.
[17] G. W. Hanson, "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, vol. 103, p. 064302, 2008.
[18] G. W. Hanson, "Dyadic Green's functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, vol. 56, pp. 747-757, 2008.
[19] V. Gusynin, S. Sharapov, and J. Carbotte, "Magneto-optical conductivity in graphene," Journal of Physics: Condensed Matter, vol. 19, p. 026222, 2006.
[20] C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications: John Wiley & Sons, 2005.