[1] R L. Haupt and S. E. Haupt, Practical Genetic Algorithms, 2nd Edition, John Wiley & Sons Inc, 2004.
[2] S. B. L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[3] W. Sun and Y.Yuan, “Optimization Theory and Methods: Nonlinear Programming”, Springer Science + Business Media, LLC Press, 2006.
[4] J. Nocedal and S. J. Wright, “Numerical Optimization”, 2nd Edition, Springer Science + Business Media, LLC Press, 2006.
[5] J. Holland, “Genetic algorithms and the optimal allocation of trial"s”, SIAM J. Comput. 2 , 88-105, 1979.
[6] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, Proceedings of IEEE International Conference on Neural Networks, 1942–1948,1995.
[7] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm”, Journal of Global Optimization 39 , 459–471,2007.
[8] M. Dorigo and V. Maniezzo, “A. Colorni, Ant System: Optimization by a colony of cooperating agents”. IEEE Transactions on Systems, Man, and Cybernetics, 1996.
[9] S. Kirkpatrick, C D. Gelatt, M P. Vecchi, “Optimization by simulated annealing”. Science 220, 671–680, 1983.
[10] Glover, F.W.: Tabu search: A tutorial. Interfaces 20, 74–94 (1990) 16.
[11] D. T. Pham, S. Otri, A. Afify, M. Mahmuddin, H. Al-Jabbouli, “Data clustering using the bees algorithm”, 40th CIRP International Seminar on Manufacturing Systems, p. p. s.p., 2007.
[12] X. Miao, J. Chu, L. Zhang, J. Qiao, “An Evolutionary Neural Network Approach to Simple Prediction of Dam Deformation”. Journal of Information & Computational Science. 10 , 315–1324, 2013.
[13] Z.W. Geem, J. H. Kim, G. V. Loganathan, “A new heuristic optimization algorithm: harmony search”, Simulation, vol. 76, no. 2, pp. 60–68, 2001.
[14] R. P. Feynman, “Simulating physics with computers”, International Journal ofTheoretical Physics. 467–488, 1982.
[15] R. P. Feynman, “Quantummechanical computers”, Foundations of Physics, 507–531, 1986.
[16] A. Narayanan and M.Moore, “Quantum-inspired genetic algorithms”, in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC ’96), 61–66, 1996.
[17] B. Bhattacharyya and V. K. Gupta, “Fuzzy based evolutionary algorithmfor reactive power optimizationwith FACTS devices,” International Journal of Electrical Power and Energy Systems, 39–47, 2014.
[18] Y. Wang, X. Feng, Y. Huang, “A novel quantum swarm evolutionary algorithm and its applications”, Neurocomputing, 633–640, 2007.
[19] S. I. Birbil and S. Fang, “An electromagnetism-like mechanism for global optimization”, Journal of Global Optimization, 263–282, 2003.
[20] O. K. Erol and I. Eksin, “A new optimizationmethod: Big Bang-Big Crunch”, Advances in Engineering Software, 106–111, 2006.
[21] M. Udrescu, L. Prodan, and M. Vlˇadut¸iu, “Implementing quantum genetic algorithms: a solution based on Grover’s algorithm,” in Proceedings of the 3rd Conference on Computing Frontiers (CF ’06), 71–81, ACM, 2006.
[22] B. Li and L. Wang, “A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling”, IEEE Transactions on Systems,Man, and Cybernetics B, 576–591, 2007.
[23] L. Wang, F. Tang, and H. Wu, “Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation”, Applied Mathematics and Computation, 1141–1156, 2005.
[24] A. Q. H. Badar, B. S. Umre, A. S. Junghare, “Reactive power control using dynamic particle swarm optimization for real power loss minimization,” International Journal of Electrical Power and Energy Systems, 133–136, 2012.
[25] M. Yazdani and F. Jolaei, “Lion Optimization Algorithm (LOA)”:Anature-inspired metaheuristic algorithm, Journal ofComputationalDesignandEngineering3, 24–36, 2016.
[26] AR. Mehrabian and C. Lucas, “A novel numerical optimization nalgorithm inspired fromweedcolonization”. Ecol. Inform. 1(4)355–66, 2006.
[27] D. Simon, “Biogeography-basedoptimization”, Evolut. Comput.IEEE Trans. 2008;12(6)702–13, 2008.
[28] X-S. Yang, “A new metaheuristic bat-inspired algorithm”. Nature Inspired Cooperative Strategies for Optimization, (NICSO2010). Springer;65–74, 2010.
[29] Y-J. Zheng, “Water wave optimization: an ewnature-inspired metaheuristic”, Comput. Oper.Res. 2014;55:1–11, 2014.
[30] J. Wang, B. Zhou, Sh. Zhou, “An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation”, Hindawi Publishing Corporation Computational Intelligence and Neuroscience, Article ID 2959370, 2016.
[31] Ch-F. Wang and K. Liu, “A Novel Particle Swarm Optimization Algorithm for Global Optimization”, Hindawi Publishing Corporation Computational Intelligence and Neuroscience, 2016.
[32] C. Cubukcuoglu, I. Chatzikonstantinou, M. Fatih Tasgetiren, S. Sariyildiz, Q-K. Pan, “A Multi-Objective Harmony Search Algorithm for Sustainable Design of Floating Settlements”, Algorithms 2016, 9, 51; doi:10.3390/a9030051, 2016.
[33] I. Obagbuwa and A. Philips Abidoye, “Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem”, Algorithms 2016, 9, 59; doi:10.3390/a9030059, 2016.
[34] R M. Rizk Allah, “Hybridization of Fruit Fly Optimization Algorithm and Firefly Algorithm for Solving Nonlinear Programming Problems”, International Journal of Swarm Intelligence and Evolutionary Computation, http://dx.doi.org/10.4172/2090-4908.1000134, 2016.
[35] J. Liang, B. Qu, P. Suganthan, “Problemdefinitions andevaluation criteria fortheCEC2014specialsessionandcompetitiononsingle objective real-parameternumericaloptimization”, Computational Intelligence Laboratory, 2013.
[36] Hall, Edward Twitchell, 1 9 1 4 -.” The hidden dimension” / Edward T. Hall, p. cm. Reprint. Originally published: Garden City,. N.Y.: Doubleday, 1966.
[37] H. Shah-Hosseini, “Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimization”, International Journal of Computational Science and Engineering, 132–140, 2011.
[38] Y. Zhang, L.Wu, Y. Zhang, J.Wang, “Immune gravitation inspired optimization algorithm”, in Advanced Intelligent Computing, pp. 178–185, Springer, Berlin,Germany, 2012.
[39] W. Li, Q. Yin, X. Zhang, “Continuous quantum ant colony optimization and its application to optimization and analysis of induction motor structure”, in Proceedings of the IEEE 5th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA ’10), 313–317, 2010.
[40] D. Ding, D. Qi, X. Luo, J. Chen, X. Wang, and P. Du, “Convergence analysis and performance of an extended central force optimization algorithm”, Applied athematics and Computation, 2246–2259, 2012.
[41] محمد، امیرعباسیان، حسین، نظامآبادی پور، «الگوریتم جستجوی گرانشی چندهدفه مبتنی بر مرتبسازی چبهههای مغلوبنشده»، مجله مهندسی برق دانشگاه تبریز، شماره 1 جلد 41، ص61-81، 1391.
[42] شهرام، جمالی، سپیده، ملک تاجی، مرتضی، آنالویی، « مکانیابی ماشینهای مجازی با استفاده از الگوریتم رقابت استعماری»، مجله مهندسی برق دانشگاه تبریز، شماره 1 جلد 46، ص75، 1395.
[43] مجید، محمدپور، حمید، پروین، « الگوریتم ژنتیک آشوب گونه مبتنی بر حافظه و خوشهبندی برای حل مسائل بهینهسازی پویا»، مجله مهندسی برق دانشگاه تبریز، شماره 3 جلد 46، ص77، 1395.
[44] P N. Suganthan, N. Hansen, J J. Liang, “Problem definitions and evaluation criteria for the CEC 2005 Special Session on Real Parameter Optimization”, Nanyang Technological University, Singapore, Tech. Rep, May. 2005[Online]. Available: http:// www3.ntu.edu.sg/home/EPNSugan/index f iles/CEC-05/Tech- Repot-May-30-05.pdf.