مدل‌سازی اتفاقی مسأله بهره‌برداری ریزشبکه در حالت جزیره‌ای با درنظرگرفتن شاخص ریسک

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه کردستان - سنندج

2 گروه مهندسی برق - دانشگاه آزاد اسلامی واحد سنندج

چکیده

در این مقاله، مسأله بهره‌برداری یک ریزشبکه در حالت جزیره‌ای و با درنظرگرفتن عدم‌قطعیت مدل‌سازی شده‌است. به‌همین‌منظور، مسأله به‌صورت یک مسأله ریاضی اتفاقی (Stochastic) که مبتنی بر یک مجموعه سناریو احتمالی بوده، برای درنظرگرفتن عدم‌قطعیت بار مصرفی و منابع تولید توان تجدیدپذیر، مدل شده‌است. برای مدل‌کردن عدم‌قطعیت و کاهش اختلاف هزینه بهره‌برداری در بهترین و بدترین سناریو از روش ارزش در معرض خطر مشروط (CVaR) استفاده شده که ابزاری مناسب برای مدیریت ریسک مسأله است. بخشی از ظرفیت تولید ریزشبکه به‌عنوان رزرو در مدل ریاضی مسأله جهت پوشش کمبود تولید ریزشبکه به‌دلیل عدم‌قطعیت، خروج تجهیزات و جزیره‌ای‌بودن ریزشبکه، لحاظ شده‌است. درنهایت، نتایج بهره‌برداری ریزشبکه بررسی‌شده و یک تحلیل حساسیت برای مشاهده ارتباط هزینه ریزشبکه با برخی از پارامترهای مدل، انجام شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Stochastic Modeling of Micro-Grid Operation Problem in Standalone Mode Considering Risk Index

نویسندگان [English]

  • P. Sheikhahmadi 1
  • S. Bahramara 2
  • J. Moshtagh 1
1 Faculty of Electrical and Computer Engineering, University of Kurdistan, Sanandaj, Iran
2 Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
چکیده [English]

In this paper, the operation problem of a micro-grid in standalone mode considering uncertainty is modeled. For this purpose, the problem is modeled as a stochastic mathematical problem based on a set of probabilistic scenarios for the consideration of the uncertainties of load and renewable power sources. To model uncertainties and reducing difference between the operation cost in the best and worst scenario, the value at risk (CVaR) as an appropriate tool for risk management is used. Some of the production capacity of micro-grid is considered in the mathematical model as a reserve in order to cover the shortage of micro-grid production due to uncertainty, equipment failure and no distribution network connection. Finally, the results of micro-grid operation have been analyzed and a sensitivity analysis is presented to observe the relationship between costs of the micro-grid with some parameters of the mathematical model.

کلیدواژه‌ها [English]

  • renewable resources
  • micro-grid
  • uncertainty
  • demand side management
  • risk management
  • stochastic modeling
[1] S. Salahi and S. Bahramara, “Modeling operation problem of micro-grids considering economical, and environmental issues as mixed integer non-linear programming ,” Int. Journal of Renewable Energy Development, vol. 5, no. 2, pp. 139-149, 2016.
[2] S. Bahramara, M. Parsa Moghadam and M.R. Haghifam, “Modeling hierarchical decision making framework for operation of active distribution grids,” IET Generation, Transmission & Distribution, vol. 9, no. 16, pp. 2555-2564, 2015.
[3] C.A. Hernandez, T.C. Green and N. Mugnior, “Fuel consumption minimization of a micro-grid,” IEEE Trans. Ind. Appl, vol. 4, no. 2, pp. 673-678, 2005.
[4] S. Conti, R. Nicolosi S. Rizzo and H. Zeineldin, “Optimal dispatching of distributed generators and storage systems for MV island micro-grids,” IEEE Trans.  Power Deliv., vol. 27, no. 3, pp. 1243-1251, 2012.
[5] D. T. Nguyen and L. B. Lee, “Risk-constraint profit maximization for micro-grid aggregator with demand response,” IEEE Trans. Smart Grid, vol. 6, no. 1, 135-146, 2015.
[6] Q. Jiang, M. Xue and G. Geng, “Energy management of micro-grid in grid-connected and stand-alone modes,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3380-3389, 2013.
[7] Y. Zhang, N. Gatsis and G. B. Giannakis, “Robust energy management for micro-grid with high-penetration renewables,” IEEE Trans. Sustainable Energy, vol. 4, no. 4, pp. 944-955, 2013.
[8] M. Mao, P. Jin, N. D. Hatziargyrious and L. Chang, “Multi-agent based hybrid energy management system for micro-grids,” IEEE Trans. Sustainable Energy, vol. 5, no. 3, pp. 938-946, 2014.
[9] M. Arabali, M. Ghofrani, M. Etezadi-Amoli and M. S. Fadali, “Genetic algorithm-based optimization approach for energy management,” IEEE Trans. Power Deliv, vol. 2, no. 4, pp. 162-170, 2013.
[10] R. P. Behnke, et al., “A micro-grid energy management system based on the rolling horizon strategy,” IEEE Trans. Smart Grid, vol. 6, no. 4, 996-1006, 2013.
[11] M. Rahimiyan, L. Baringo and A. J. Conejo, “Energy management of a cluster of interconnected price-responsive demands,” IEEE Trans. Power syst., vol. 3, no. 5, pp. 645-655, 2014.
[12] W. Alharbi and K. Raahemifa, “Probabilistic coordination of micro-grid energy resources operation considering uncertainty,” Elect. Power Syst. Res, vol. 2, no. 3, 1-10, 2015.
[13] M. Elsied, A. Oukaour, H. Gualous, O.A. Lo Brutto, “Optimal economic and environment operation of micro-grid power system, ” Energy Conversion and Management, vol. 122, 182-194, 2016.
[14] M. Elsied, A. Oukaour, H. Gualous, O.A. Lo Brutto, “Optimal economic and environment operation of micro-grid power system, ” Energy Conversion and Management, vol. 122, 182-194, 2016.
[15] H. Kanchev, F. Colas, V. Lazarov, B. Francois, “Emission reduction and economical optimization of an urban micro-grid operation including dispatched PV-Based active generators,” IEEE Transactions on Sustainable Energy, vol.5, 1397-1405, 2014.
[16] S. Mazzola, C. Vergara, M. Astolfi, V. Li, I. Perez-Arriaga, E. Macchi, “Assessing the value of forecast-based dispatch in the operation of off-grid rural micro-grids, ” Renewable Energy, vol. 108, 116-125, 2017.
[17] H. Ren, W. Zhou, K.i. Nakagami, W. Gao, Q. Wu, “Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects,” Applied Energy, vol. 87, 3642-3651, 2010.
[18] M. Ashari, C.V. Nayar, “An optimum dispatch strategy using set points for a photovoltaic (PV)-diesel-battery hybrid power system,” Solar Energy, vol. 66, 1-9, 1999.
[19] A. Gupta, R.P. Saini, M.P. Sharma, “Modelling of hybrid energy system: Combined dispatch strategies and solution algorithm,” Renewable Energy, vol. 36, 466-473, 2011.
[20] H. Morais, P. Kadar, P. Faria, Z.A. Vale, H.M. Khodr, , “Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming,” Renewable Energy, vol. 35, 151-156, 2010.
[21] علی مهدی‌زاده، نوید تقی‌زادگان کلانتری، «برنامه‌ریزی تصادفی ریزشبکه جزیره‌ای در حضور سیستم ذخیره‌ساز هیدروژنی و برنامه پاسخگویی بار»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، تابستان 1396.
[22] جمیل جنتی، داریوش نظرپور، «مدیریت انرژی پارکینگ هوشمند خودروهای برقی در یک ریزشبکه با در نظر گرفتن اثرات برنامه  پاسخ‌گویی بار»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، تابستان 1396.
[23] A. J. Conejo, M. Carrion, J. M. Morales, “Decision making under uncertainty in electricity markets,” New York: Springer, 2010.
[24] M.Q. Wang, H, Gooi, “Spinning reserve estimation in microgrids,” IEEE Trans. Power Syst., Vol. 26, pp. 1164-1174, 2011.
[25] Doostizadeh and H. Ghasemi, “Day-ahead scheduling of an active distribution network considering energy and reserve markets,” Int. Trans. Elect. Energy Syst., vol. 23, no. 5, 930-945, 2013.
[26] J. Shen, C. Jiang, Y. Liu, A. X. Wang, “A micro-grid energy management system and risk management under an electricity market environment,” IEEE Access, vol. 4, no. 1, 2349-2356, 2016.
[27] T. Logenthiran, D. Srinivasan and A. M. Khambadkone, “Multi-agent system for energy resource scheduling of integrated micro-grids in a distributed system,” Elect. Power Syst. Res, vol. 8, no. 5, 138-148, 2011.
[28] I. Bae, J. Kim, C. Singh, “Optimal Operating Strategy for distributed generation considering hourly reliability worth,” IEEE Trans. Power Syst., vol. 19, no. 1, 287-292, 2004.