طراحی بهینه ریزشبکه‌های به‌هم پیوسته در حضور پارکینگ خودروهای الکتریکی

نویسندگان

1 آزمایشگاه تحقیقاتی شبکه‌های توزیع هوشمند - گروه مهندسی برق - دانشگاه شهید مدنی آذربایجان - تبریز

2 دانشکده مهندسی برق - دانشگاه صنعتی امیرکبیر - تهران

چکیده

با ایجاد و گسترش ریزشبکه‌ها در شبکه‌های توزیع، تعداد آنها همواره روبه افزایش است. با این فرض، مساله طراحی بهینه شبکه‌های توزیع نوین با چالش‌های جدیدی روبرو گردیده است. در این مقاله، به طراحی بهنیه یک شبکه توزیع هوشمند بر اساس ریزشبکه‌های چندگانه و به‌هم پیوسته پرداخته شده است.  ذخیره‌سازهای انرژی نقش مهمی در ریزشبکه‌ها و کاهش اثر عدم قطعیت در تولید برخی از منابع دارند و از طرفی با توجه به نقش خودروهای الکتریکی به عنوان ذخیره کننده انرژی، در این طراحی نقش پارکینگ‌های الکتریکی مورد بررسی قرار گرفته است. در این مقاله یک شبکه توزیع هوشمند طوری طراحی می‌گردد که قابلیت مرزبندی به مجموعه‌ای از ریزشبکه‌ها وجود داشته باشد و مرزهای بهینه آنها با حفظ معیارهای فنی و اقتصادی، نظیر کاهش هزینه‌های احداث و بهره‌برداری، افزایش قابلیت اطمینان، بهبود پروفیل ولتاژ با درنظرگیری پارکینگ خودروهای الکتریکی به عنوان منابع ذخیره‌ساز می‌باشد، تعیین گردد. برای هر کدام از توابع هدف مرزهای ریزشبکه‌ها، نوع و ظرفیت منابع هر ریزشبکه و آرایش کلی شبکه توزیع به صورت بهینه مشخص می‌گردد. نتایج مطالعه به صورت گرافیگی و جدولی ارایه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Planning of Networked-Microgrids in the Presence of EV’s Parking Lot

نویسندگان [English]

  • F. Rahbaran 1
  • S. Najafi Ravadanegh 1
  • G. B. Gharhepetian 2
1 Smart Distribution Grid Research Lab, Electrical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran
2 Faculty of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

With appearance and development of Microgrids (MGs), the number of MGs is continuously increased in smart distribution networks. Hence the future distribution network operation and planning is encountered with new challenges. In this paper, the problem of networked-microgrids based distribution network planning is considered. The parking lot for electric vehicles as storage resources to reduce the impacts of uncertainties on networked-MGs design is investigated. The boundary of MGs is determined and segmented considering techno-economical constraints such as total network planning and operation costs, reliability improvement of MGs, optimal sizing and locating of energy resources within each MGs and the voltage profile improvement in the presence of EV’s parking lot as storages. For each objective function, optimal border of each MG, its relevant energy resources and EV parking lot capacity and location as well as optimal layout of smart distribution network is obtained. The results are represented both tabular form and graphically.

کلیدواژه‌ها [English]

  • Smart Distribution Grid
  • Networked-microgrids
  • Energy storage
  • electric vehicle
  • Parking lot
[1] Anil Pahwa and S. Mandal, “Economic Evaluation of Distribution Automation for An Urban and for A Roral system,” Electr. Comput. Eng. Conf., 1999.
[2] A. Zakariazadeh, S. Jadid, and P. Siano, “Economic-environmental energy and reserve scheduling of smart distribution systems: A multiobjective mathematical programming approach,” Energy Convers. Manag., vol. 78, pp. 151–164, 2014.
[3] H. Falsafi, A. Zakariazadeh, and S. Jadid, “The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming,” Energy, vol. 64, pp. 853–867, 2014.
[4] J. M. Carrasco et al., “Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Jun. 2006.
[5] W. Huang, M. Lu, and L. Zhang, “Survey on Microgrid Control Strategies,” Energy Procedia, vol. 12, pp. 206–212, 2011.
[6] S. A. Arefifar, Y. A.-R. I. Mohamed, and T. H. M. EL-Fouly, “Optimum Microgrid Design for Enhancing Reliability and Supply-Security,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1567–1575, Sep. 2013.
[7] M. Javadi, M. Marzband, J. L. Domínguez-García, and M. Mirhosseini Moghaddam, “Non-cooperative game theory based energy management systems for energy district in the retail market considering DER uncertainties,” IET Gener. Transm. Distrib., vol. 10, no. 12, pp. 2999–3009, Sep. 2016.
[8] M. Marzband, N. Parhizi, M. Savaghebi, and J. M. Guerrero, “Distributed Smart Decision-Making for a Multimicrogrid System Based on a Hierarchical Interactive Architecture,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 637–648, Jun. 2016.
[9] M. Marzband, A. Sumper, A. Ruiz-Álvarez, J. L. Domínguez-García, and B. Tomoiagă, “Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets,” Appl. Energy, vol. 106, pp. 365–376, 2013.
[10] M. Marzband, A. Sumper, J. L. Domínguez-García, and R. Gumara-Ferret, “Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP,” Energy Convers. Manag., vol. 76, pp. 314–322, 2013.
[11] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining Control Strategies for MicroGrids Islanded Operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006.
[12] N. Nikmehr and S. Najafi Ravadanegh, “Optimal Power Dispatch of Multi-Microgrids at Future Smart Distribution Grids,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1648–1657, Jul. 2015.
[13] S. Najafi Ravadanegh and N. Nikmehr, “Heuristic probabilistic power flow algorithm for microgrids operation and planning,” IET Gener. Transm. Distrib., vol. 9, no. 11, pp. 985–995, Aug. 2015.
[14] N. Nikmehr and S. Najafi Ravadanegh, “A study on optimal power sharing in interconnected microgrids under uncertainty,” Int. Trans. Electr. Energy Syst., vol. 26, no. 1, p. n/a-n/a, Apr. 2015.
[15] M. Mohammadi, S. H. Hosseinian, and G. B. Gharehpetian, “GA-based optimal sizing of microgrid and DG units under pool and hybrid electricity markets,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 83–92, 2012.
[16] M. Alonso, H. Amaris, and C. Alvarez-Ortega, “Integration of renewable energy sources in smart grids by means of evolutionary optimization algorithms,” Expert Syst. Appl., vol. 39, no. 5, pp. 5513–5522, 2012.
[17] C. Bustos, D. Watts, and H. Ren, “MicroGrid Operation and Design Optimization With Synthetic Wins and Solar Resources,” IEEE Lat. Am. Trans., vol. 10, no. 2, pp. 1550–1562, Mar. 2012.
[18] H. Lund and W. Kempton, “Integration of renewable energy into the transport and electricity sectors through V2G,” Energy Policy, vol. 36, no. 9, pp. 3578–3587, Sep. 2008.
[19] Q. Zhang, K. N. Ishihara, B. C. Mclellan, and T. Tezuka, “Scenario analysis on future electricity supply and demand in Japan,” Energy, vol. 38, no. 1, pp. 376–385, Feb. 2012.
[20] M. Pantoš, “Stochastic optimal charging of electric-drive vehicles with renewable energy,” Energy, vol. 36, no. 11, pp. 6567–6576, Nov. 2011.
[21] B. Soares M.C. Borba, A. Szklo, and R. Schaeffer, “Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil,” Energy, vol. 37, no. 1, pp. 469–481, Jan. 2012.
[22] M. Honarmand, A. Zakariazadeh, and S. Jadid, “Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid,” Energy Convers. Manag., vol. 86, pp. 745–755, Oct. 2014.
[23] F. Fazelpour, M. Vafaeipour, O. Rahbari, and M. A. Rosen, “Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics,” Energy Convers. Manag., vol. 77, pp. 250–261, Jan. 2014.
[24] M. Moradijoz, M. Parsa Moghaddam, M. R. Haghifam, and E. Alishahi, “A multi-objective optimization problem for allocating parking lots in a distribution network,” Int. J. Electr. Power Energy Syst., vol. 46, pp. 115–122, Mar. 2013.
[25] A. El-Zonkoly and L. dos Santos Coelho, “Optimal allocation, sizing of PHEV parking lots in distribution system,” Int. J. Electr. Power Energy Syst., vol. 67, pp. 472–477, May 2015.
[26] P. Li, X. Guan, J. Wu, and D. Wang, “An Integrated Energy Exchange Scheduling and Pricing Strategy for Multi-Microgrid System,” 2013.
[27] J. S. Ren et al., “Energy Management of a Multi-Agent Based Multi- Microgrid System,” 2014.
[28] N. Parhizi, M. Marzband, Seyyed Maziar Mirhosseini Moghaddam, and Behnam Mohammadi Ivatloo, “The Experimental Implementation of an Energy Management System for a Grid Connected Microgrid by using a Multi-period Imperialist Competition Algorithm,” Tabriz J. Electr. Eng., vol. 46, no. 1, 2016.
[29] W. Chiu, H. Sun, and H. V. Poor, “A Multiobjective Approach to Multimicrogrid System Design,” vol. 6, no. 5, pp. 2263–2272, 2015.
[30] M. Tourani, P. D. Student, M. R. Aghaebrahimi, and H. R. Najafi, “Scheduling the Charging and Discharging of Electric Vehicles in Microgrid based on Vehicles â€TM Daily Travel,” Tabriz J. Electr. Eng., vol. 46, no. 4, pp. 65–76, 2016.
[31] M. Tourani, M. R. Aghaebrahimi, and H. R. Najafi, “Scheduling Parking Lot Area and Charging and Discharging of Electric Vehicles in order to Improve the Reliability of Smart Grids,” Tabriz J. Electr. Eng., vol. 47, no. 2, pp. 413–422.
[32] A. Zidan, M. F. Shaaban, and E. F. El-Saadany, “Long-term multi-objective distribution network planning by DG allocation and feeders’ reconfiguration,” Electr. Power Syst. Res., vol. 105, pp. 95–104, 2013.
[33] E. Babazadeh, M. R. J. Oskuee, J. Pourmahmoud, and S. N. Ravadanegh, “Optimal Planning o f Smart Distribution Network Based o n Efficiency Evaluation Using Data Envelopment Analysis,” Int. J. Electr. Eng. Informatics, vol. 8, no. 1, pp. 45–61, 2016.
[34] M. R. J. Oskuee, E. Babazadeh, S. Najafi-Ravadanegh, and J. Pourmahmoud, “Multi-Stage Planning of Distribution Networks with Application of Multi-Objective Algorithm Accompanied by DEA Considering Economical, Environmental and Technical Improvements,” J. Circuits, Syst. Comput., vol. 25, no. 4, p. 1650025, 2016.
[35] J. Soares, B. Canizes, C. Lobo, Z. Vale, and H. Morais, “Electric Vehicle Scenario Simulator Tool for Smart Grid Operators,” pp. 1881–1899, 2012.
[36] W. Su and M. Y. Chow, “Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck,” Appl. Energy, vol. 96, pp. 171–182, 2012.