تشخیص کاربران متقلب همدست در شبکه اجتماعی حراجی

نویسندگان

گروه مهندسی کامپیوتر - دانشگاه یزد

چکیده

در طی سال‌های گذشته حراجی‌های برخط مورد توجه زیادی قرار گرفته است که با توجه به بعد مالی حراجی، منجر به افزایش تقلب در حراجی‌های برخط نیز شده است. به عنوان مثال، تقلب در حراج‌های اینترنتی از جمله شرکت eBay که یک شرکت مشهور در حراج‌های برخط می‌باشد، افزایش یافته است. به همین دلیل، پژوهش‌های مختلفی با رویکرد تشخیص خریداران و فروشندگان متقلب در سراسر دنیا انجام‌شده است. در حال حاضر در ایران، حراجی‌ها بیشتر در سازمان‌های دولتی بزرگ انجام می‌شود که قطعاً در صورت تقلب ضررهای مالی بزرگی را خواهد داشت. یکی از انواع تقلب، تقلب با روش همکاری و تبانی کاربران متقلب در حراجی می‌باشد که این نوع تقلب در صورت وقوع بسیار خطرناک می‌باشد و ضررهای مالی تاسف‌باری را خواهد داشت. در این مقاله الگوریتمی پیشنهاد می‌گردد که ابتدا ویژگی‌های مؤثر در یافتن افراد صادق را برای هر کاربر حراجی استخراج نماید و سپس با استفاده از طبقه‌بندی تک دسته‌بند OCSVM، برای هرکاربر یک نمره ناهنجاری را حساب نماید. در نهایت این الگوریتم، ارتباطات بین کاربران حراجی را با روش مارکف تصادفی مدل‌سازی می‌نماید تا باورهای کاربران را در مورد کاربران همسایه در گراف انتشار دهد و با این روش نمرات ناهنجاری را بازنگری نماید. نتایج این الگوریتم نشان می‌دهد که این تکنیک در هر سه نوع مختلف تقلب‌های اینترنتی می‌تواند کاربران متقلب همکار را با کارآیی بالا تشخیص دهد و در زمان سریع‌تر نسبت به الگوریتم‌های قبلی همگرا شده و پاسخ می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Detecting Collusive Fraud in Social Network of Online Auction

نویسندگان [English]

  • M. Dadfarnia
  • F. Adibnia
Department of Computer Engineering, Yazd University, Yazd, Iran
چکیده [English]

During last years, online auction has attracted many researchers. However, growing popularity in online auctions result in increasing fraud in online auctions. For instance, fraud increased in eBay, as a popular company in online auction. Therefore, many researches have done for detecting fraudulent buyers and sellers. One of the fraud type in online auctions is collusive auction fraud, in which multiple seller and bidders collude with each other. This kind of fraud is dangerous and caused catastrophic financial losses. Therefore, many techniques proposed to deal with this kind of fraud in online auctions. In this paper, we propose a novel detection technique in online auctions that use one-class to calculate an anomaly score for each unlabeled user. Then it models the users’ interactions in the auctions as a pairwise markov random field (MRF). Next, our technique applies belief propagation to the MRF to revise anomaly scores. The results of our experiments show that our proposed technique is able to detect different types of collusive auction frauds within a reasonable detection time.

کلیدواژه‌ها [English]

  • Detecting collusive fraud
  • bidding
  • Markov random field
  • belief propagation
  • one class classification
[1] C. Bauner, "Mechanism choice and the buy-it-now auction: A structural model of competing buyers and sellers", International Journal of Industrial Organization. pp. 19-31, Elsevier 2015.
[2] F. Dong , S. M. Shatz  and H. Xu, "Combating online in-auction fraud: Clues, techniques and challenges", Computer Science Review vol. 3, pp. 245–258, Elsevier 2009.
[3] F. M. Menezes and P. K. Monteiro, An Introduction to Auction Theory, New York, NY, USA: Oxford University Press, 2005.
[4] MI. Melnik, "Confronting the Challenges of Asymmetry of Information and Competition: The Rise of eBay", InTrends and Innovations in Marketing Information Systems, pp. 293-307, IGI Global Book 2015.
[5] DataStax. eBay Engages Customers with Personalized Recommenda­tions. Accessed on: Aug. 22, 2017. [Online]. Available:https://www. datastax.com/resources/casestudies/ebay
[6] M. M. Flax, Economic Crimes, San Clemente, CA, USA: LawTech Publishing Group, 2005.
[7] J. S. Thomas and F. A. Jose, "E-Auction Frauds - A Survey", vol. 61, pp. 41–45, IJCA 2013.
[8] Center, N. W. C. C., the Federal Bureau of Investigation, 2015. Ic3 2015 internet fraud crime report. https://pdf.ic3.gov//2015IC3Report.
[9] S. Ganguly and S. Sadaoui, "Classification of Imbalanced Auction Fraud Data", Canadian Conference on Artificial Intelligence, pp. 84-89, Springer 2017.
[10] CH. Yu, "A Fuzzy Genetic Approach for Optimization of Online Auction Fraud Detection", Frontier Computing , pp. 965-974, Springer 2016.
[11] DH. Chau and C. Faloutsos, "Fraud Detection Using Social Network Analysis", a Case Study, Encyclopedia of Social Network Analysis and Mining, pp. 547-552, Springer 2014.
[12] J. Li, KF. Tso and F. Liu, Profit earning and monetary loss bidding in online entertainment shopping: the impacts of bidding patterns and characteristics. Electronic Markets. pp. 77-90, 2017.
[13] D. H. Chau and C. Faloutsos, "Fraud detection in electronic auction", European Web Mining Forum  Proceeding, pp. 87–97, 2005.
[14] مرتضی خرّم کشکولی، مریم دهقانی، «تشخیص، شناسایی و جداسازی عیب توربین گاز پالایشگاه دوم پارس جنوبی با استفاده از روش‌های ترکیبی داده‌کاوی، k-means، تحلیل مؤلفه‌های اصلی (PCA)  و ماشین بردار پشتیبان (SVM) »، مجله مهندسی برق دانشگاه تبریز، شماره (2)47، صفحه 515-501، سال 1396.
[15] میلاد رفیعی، مهدی عباسی، محمد نصیری، «روشی کارا برای پیاده‌سازی موازی الگوریتم دسته بندی بسته درخت سلسله‌مراتبی بر روی واحد پردازش گرافیکی». مجله مهندسی برق دانشگاه تبریز، شماره (3)46، صفحه 196-181، سال 1395.
[16] KM. Dolan and S. Agent, “Internet auction fraud: the silent victims”, Journal of Economic Crime Management. 2004;2(1):1-22.
[17] M. Jenamani, Y. Zhong and B. Bhargava, Cheating in online auction–Towards explaining the popularity of English auction, Electronic Commerce Research and Applications. 2007;6(1):53-62.
[18] TD. Kavu, T. Rugube, F. Kawondera, and N. Chifamba, "A fraud detection tool in E-auctions", African Journal of Mathematics and Computer Science Research, pp. 1–11, Academic Journals 2016.
[19] D. H. Chau, S. Pandit, and C. Faloutsos, “Detecting Fraudulent Personalities in Networks of Online Auctioneers”, pp. 103–114, Springer 2006.
[20] S. Pandit, D. Chau, S. Wang, and C. Faloutsos, “Netprobe: a Fast and Scalable System for Fraud Detection in Online Auction Networks", Conference on World Wide Web, vol. 42, pp. 201–210, ACM 2007.
[21] S. Tsang, Y. S. Koh, G. Dobbie, and S. Alam, “SPAN: Finding Collaborative Frauds in Online Auctions”, Knowledge-Based Syst., vol. 71, pp. 389–408, Elsevier 2014.
[22] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed., London, UK: Springer-Verlag London, 2009.
[23] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approximate inference: An empirical study”, 15th Conference Uncer­tainty in Artificial Intelligence, pp. 467–475, ACM 1999.
[24] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief propagation and its generalizations”, Exploring Artificial Intelligence in the New Millennium, pp. 239–269, 2003.