[1] J. Nocedal and S. Wright, Numerical optimization, Springer Science & Business Media, 2006.
[2] J.J. Liang, B.Y. Qu, P.N. Suganthan and Q. Chen, “Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization.” Technical Report201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2014.
[3] B.Y. Qu, J.J. Liang, Z.Y. Wang, Q. Chen and P.N. Suganthan, “Novel benchmark functions for continuous multimodal optimization with comparative results,” Swarm and Evolutionary Computation, vol. 26, pp. 23-34, 2016.
[4] E.G. Talbi, Metaheuristics: from design to implementation, John Wiley & Sons, 2009.
[5] K. Miettinen, P. Neittanmaki, M.M. Makela and J. Periaux, Evolutionary algorithms in engineering and computer science, John Wiley and Sons, Ltd, New York, 1999.
[6] J. Kennedy, R.C. Eberhart and Y. Shi, Swarm intelligence. Morgan Kaufmann, 2001.
[7] R.C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” In Proceedings of the sixth international symposium on micro machine and human science, 1995.
[8] عباسیان و نظام آبادی پور، «الگوریتم جستجوی گرانشی چندهدفه مبتنی بر مرتبسازی جبهههای مغلوبنشده»، مجله مهندسی برق، دوره 41، شماره 1، صفحات 80-68، دانشگاه تبریز، 1390.
[9] شکرانیپور و افتخاریمقدم، «ACPSO: یک الگوریتم جدید بهینهسازی گروه ذرات تعاونی با قابلیت بهروزرسانی تطبیقی پارامترها»، مجله مهندسی برق، دوره 40، شماره 2، صفحات 36-21، دانشگاه تبریز، 1389.
[10] M. Dorigo, Optimization, learning and natural algorithms, Ph.D. Thesis, Politecnico di Milano, Italy, 1992.
[11] B.Y. Qu, P.N. Suganthan and S. Das, “A distance-based locally informed particle swarm model for multimodal optimization,” IEEE Transactions on Evolutionary Computation, vol. 17(3), pp. 387-402, 2013.
[12] R. Brits, A.P. Engelbrecht and F. Van den Bergh, “A niching particle swarm optimizer,” In Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning. Singapore: Orchid Country Club, 2002.
[13] E. Özcan and M. Yılmaz, “Particle swarms for multimodal optimization,” In International Conference on Adaptive and Natural Computing Algorithms (pp. 366-375). Springer Berlin Heidelberg, 2007.
[14] A. Passaro and A. Starita, “Particle swarm optimization for multimodal functions: a clustering approach,” Journal of Artificial Evolution and Applications, vol. 2008, 2008.
[15] X. Li, “Niching without niching parameters: particle swarm optimization using a ring topology,” IEEE Transactions on Evolutionary Computation, vol. 14(1), pp. 150-169, 2010.
[16] X. Li, “Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization,” in Proc. Genet. Evol. Computat. Conf., vol. 3102, pp. 105–116, 2004.
[17] X. Li, “A multimodal particle swarm optimizer based on fitness Euclidean-distance ration,” in Proc. Genet. Evol. Computat. Conf., pp. 78–85, 2007.
[18] X. Li, “Efficient differential evolution using speciation for multimodal function optimization,” in Proc. Conf. Genet. Evol. Computat., pp. 873–880, 2005.
[19] R. Thomsen, “Multimodal optimization using crowding-based differential evolution,” in Proc. IEEE Congr. Evol. Computat, pp. 1382–1389, 2004.