تشخیص جریان هجومی از جریان خطای داخلی در ترانسفورماتورهای قدرت با روش تبدیل فوریه کسری

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه سمنان

چکیده

هدف این مقاله ارائه روش جدیدی درجهت بهبود حفاظت دیفرانسیل ترانسفورماتورهای قدرت است. تبدیل فوریه کسری روشی است که در این مقاله و درراستای تشخیص و تمایز جریان هجومی از جریان خطای داخلی استفاده شده‌است. تبدیل فوریه کسری یک روش زمان - فرکانسی است که برخلاف تبدیل فوریه معمولی قادر است، ویژگی‌های زمانی و فرکانسی یک سیگنال را به‌طور هم‌زمان نشان دهد و بنابراین در شناخت ویژگی‌های سیگنال‌های ناایستا قدرتمند است.این روش نیازی به تعریف پنجره اطلاعات همانند تبدیل موجک ندارد و در محیط نویزی پایدارباقی می‌ماند. روش معرفی‌شده هم‌چنین دارای الگوریتم ساده و بار محاسباتی کم می‌باشد. دقت و صحت عملکرد این روش با شبیه‌سازی سیگنال‌های جریان هجومی و جریان خطای داخلی در نرم‌افزار PSCAD/EMTDC مورد ارزیابی قرار گرفته‌است. این روش توانایی خود را در تشخیص و تمایز این جریان‌ها در شرایط بدون نویز و در حضور نویز به خوبی نشان داده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Discrimination of Inrush Currents from Internal Faults in Power Transformers using Fractional Fourier Transform

نویسندگان [English]

  • Z. Moravej
  • Z. Tabak
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
چکیده [English]

This paper proposes a new method to improve power transformer differential protection. Fractional Fourier transform is implemented in order to discriminate inrush current from internal fault current. Fractional Fourier transform is a time-frequency method and unlike conventional Fourier transform, it is able to represent the time and frequency characteristics of signals. Thus, the proposed method is powerful to recognize non-stationary signal features. In addition, there is no need to define the data window such as wavelet transform and is stable in the noisy environment. A simple algorithm and a low computational burden are the advantages of this method. The accuracy of this method is evaluated by simulated inrush current and internal fault current signals in PSCAD/EMTDC software. This method is demonstrating its ability to distinguish these currents in the presence of noise and without it.

کلیدواژه‌ها [English]

  • Fractional Fourier transform
  • inrush current
  • internal fault current
  • differential protection
  • power transformer
[1] H. Weng, and X. Lin, “Studies on the unusual mal-operation of transformer differential protection during the nonlinear load switch-in,”IEEE Transactions on Power Delivery, vol. 24, no. 4, May,  2009.
[2] A.Hooshyar,M.SanayePasand,S.Afsharnia,M.Davarpanah and B.M.Ebrahimi,“Time-domain analysis of differential power signal to detect magnetizing inrush in power transformers,”IEEE Transactions on Power Delivery, vol. 27, no. 3, June, 2012.
[3] O. Ozgonenel and S. Karagol, “Power transformer protection based on decision tree approach,” IET Electric Power Applications, vol. 8, no. 7, July, 2014.
[4] Z. Moravej, D. N. Vishwakarma and S. P. Singh, “Application of radial basic function neural network for differential relaying of a power transformer,” Computers & Electrical Engineering, vol. 29, no. 3,May, 2003.
[5] H. Balaga, N. Gupta and D. N. Vishwakarma, “GA trained parallel hidden layered ANN based differential protection of three phase power transformer, “Int. J. Electr. Power Energy Syst, vol. 67, May, 2015.
[6] N. Logan than and A. Pavithra, “Distinguishing the Various Faults in transformer and Its Protection Using Support Vector Machine,” International Journal of Research and Engineering, vol. 2, no. 4, Apr, 2015.
[7] امید قادری و محمدرضا فیضی، «روش جدید برای تخمین عمر باقی‌مانده ترانسفورماتورهای قدرت با استفاده از آنالیز گازهای محلول در روغن»، مجله مهندسی برق دانشگاه تبریز، شماره 1، جلد 39، صفحه 36-25، 1388.
[8] H. O. Mota, F. H. Vasconcelos and C. L. de Castro, “A comparison of cycle spinning versus stationary wavelet Transform for the Extraction of Features of Partial Discharge signals,”IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 2, May 2016.
[9] O. Ozgonenel and S. Karagol, “Transformer differential protection using wavelet transform,”Electric Power Systems Research, vol. 114, pp. 60–67, September, 2014.
[10] A. Ashrafian, M. Rostami and G.B. Gharehpetian, “Hyperbolic S-transform-based method for classification of external faults, incipient faults, inrush currents and internal faults in power transformers,” IET Generation, Transmission & Distribution, vol. 6, no. 10, pp. 940-950,October, 2012.
[11] A. Ashrafian, M. Rostami and G. B. Gharehpetian, “Characterization of internal disturbances and external faults in transformers using an S-transform–based algorithm, ”Tyrk J EI ec Eng & Comp Sci, vol. 21, no. 2, pp.330-349, April,2013.
[12] Z. Moravej, A. A. Abdoos and M. Sanaye-Pasand, “Power transformer protection scheme based on time-frequency analysis,” Int. Trans. Electr. Energy.Syst, vol. 23, no. 4, pp. 473–493, January, 2013.
[13] A. Ashrafian, B. Vahidi and M. Mirsalim, “Time–time-transform application to fault diagnosis of power transformers,” IET Gener. Transm.Distrib, vol. 8, no. 6, pp. 1156-1167, June, 2014.
[14] S. K. Murugan, S. P. Simon, P. S. R. Nayak, K. Sundareswaran and N. P. Padhy, “Power transformer protection using chirplet transform,” IET Gener. Transm.Distrib, vol. 10, no. 10, pp. 2520-2530, July, 2016.
[15] A. M. Shah and B.R. Bhalja, “Fault discrimination scheme for power transformer using random forest technique,” IET Gener. Transm.Distrib, vol.10, no. 6, pp. 1431-1439, April, 2016.
[16] E. Al-Ammar, G. G. Karady and H. J. Sim, “Novel technique to improve the fault detection sensitivity in transformer impulse test,”IEEE Transactions on Power Delivery. vol. 23, no. 2, pp. 717-725, April, 2008.
[17] H. M. Ozaktas, Z. Zalevsky and M. A. Kutay, The fractional Fourier transform with applications in optics and signal processing. Chichester, Wiley Publishing, 2001.
[18] E.Sejdi, I. Djurovi and J. Jiang, “Timefrequencyfeature representation using energy concentration: An overview of recent advances, “Digital Signal Processing, vol. 19, no. 1,pp. 153—183,January, 2009.
[19] D. Mendlovic and H.M.Ozaktas, “Fractional fourier transforms and their optical implementation: part I,” Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 10, no. 9, pp. 1875-1881, September, 1993.
[20] D. Mendlovic and H. M. Ozaktas , “Fractional Fourier transforms and their optical implementation: part II,” Journal of the Optical Society of America A: Optics and Image Science, and Vision, vol. 10, no. 12, pp. 2522-2531, December,1993.
[21] L. B. Almeida, “The fractional fourier transform and time frequency representations,” IEEE Transactions on Signal Processing, vol. 42,no. 11, pp. 3084-3091,Nov,1994.
[22] G. Cariolaro, T. Erseghe, P. Kraniauskas and N. Laurenti, “A unified framework for the fractional fourier transform,”IEEE Transactions on Signal Processing, vol. 46, no. 12, pp. 3206-3219,Dec,1998.
[23] V. Namias, “The fractional order fourier transform andits application to quantum mechanics,” IMA Journal of Applied Mathematics, vol. 25,no. 3, pp. 241-265,March,1980.
[24] M.Irfan, L. Zheng and H.Shahzad, “Review of computing algorithms for discrete fractional Fouriertransform, “Research Journal of Applied Sciences, Engineering and Technology, vol. 6,no. 11, pp. 1911-1919,July,2013.
[25] A.Rezaei-Zare,R.Iravani,M.Sanaye-Pasand,H.Mohseni, S.Farhangi, “An accuratecurrenttransformermodel based on preisach theory for the analysis of electromagnetic transients,”IEEE Transactions on Power Delivery,vol. 23, no. 1, pp. 233-242, Jan,2008.
[26] بهرام نوشاد، مرتضی رزاز و سید قدرت اله سیف السادات."تعیین یک مدل دقیق ترانسفورماتور جریان برای آنالیز حالت‌های گذرای الکترومغناطیسی در طی خطاهای الکتریکی" مجله مهندسی برق دانشگاه تبریز، جلد41، شماره 2، صفحات 86-75، 1390.
[27] U.D.Annakkage,P.G.McLaren,E.Dirks,“A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis,”IEEE Transactions on Power Delivery, vol. 15, no. 1, pp. 51-67,Jan, 2000.
[28] A.A. Hossum-Eldin, M.A. Refaey, “A novel algorithm for discrimination between inrush current and internal faults in power transformer differential protection based on discrete wavelet transform,”Electric Power Systems Research, Vol. 81, no. 1, pp. 1-6, January,2011.