پایدارساز سیستم قدرت احتمالاتی

نویسندگان

دانشکده مهندسی برق - دانشگاه تربیت دبیر شهید رجایی - تهران

چکیده

یکی از روش‌های میرا کردن نوسانات فرکانس پایین، به‌کارگیری پایدارساز سیستم قدرت (PSS) می‌باشد. معمولاً تنظیم پارامترهای PSS با روش معین انجام می‌شود. در این روش تعداد محدودی از نقاط کار مختلف درنظر گرفته می‌شود. ازاین‌رو، کارایی PSS تنها محدود به همان نقاط کار می‌شود. در این مقاله طراحی PSS به‌ازای رنج وسیعی از تغییرات بار انجام می‌گردد. به این منظور، چند سطح بار مختلف درنظر گرفته می‌شود و به هر سطح بار یک احتمال اختصاص داده می‌شود. سپس برای درنظرگرفتن تغییرات بار در اطراف هر سطح، متناظر با هر سطح بار، یک توزیع احتمال نرمال برای تغییرات بار لحاظ می‌گردد. میانگین هر توزیع نرمال، برابر با مقدار سطح بار متناظر درنظر گرفته می‌شود. واریانس توزیع نیز برابر با درصدی از مقدار میانگین انتخاب می‌گردد. برای بار، دو مدل توان ثابت و امپدانس ثابت لحاظ می‌شود. برای تنظیم پارامترهای PSS، یک مسئله بهینه‌سازی تعریف می‌شود که تابع هدف آن، حداقل کردن احتمال قرار گرفتن مقادیر ویژه در نواحی نامطلوب است. مقایسه نتایج به‌کارگیری PSSهای معین و احتمالاتی در سیستم 39 شینه IEEE نشان می‌دهد که PSS احتمالاتی در برابر تغییرات بار مقاوم‌تر است.

کلیدواژه‌ها


عنوان مقاله [English]

Probabilistic Power System Stabilizer

نویسندگان [English]

  • F. Karbalaei
  • M. Taherkhani
Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
چکیده [English]

One of the low-frequency oscillation damping methods is to use power system stabilizer (PSS). Setting of PSS parameters is typically performed via certain (deterministic) methods, in which a limited number of different operating points are taken into account. Therefore, PSS performance is limited to the same operating points. In this paper, the design of PSS is performed for a wide range of load changes. In this regard, several different load levels are considered and one possibility is assigned to each load level. Then to consider load variation around each load level, corresponding to each level, a normal probability distribution function is considered for load changes. Mean value of each normal distribution is assumed to be equal to the corresponding value of the load level. Distribution variance is also chosen equal to the percentage of the mean value. Two models of constant power and constant impedance models are used for the loads. To set the parameters of PSS, an optimization problem is defined with the objective function of minimizing of the presence probability of eigenvalues in the unsuitable areas.  Comparing the results obtained by using certain and probabilistic PSS in the IEEE 39- bus test system shows that the proposed method is more robust to load variations.

کلیدواژه‌ها [English]

  • small signal stability
  • power system stabilizer
  • low frequency oscillations
  • state space equations
  • Monte Carlo
  • genetic algorithm
[1] E.S. Ali, “Optimization of Power System Stabilizers using BAT search algorithm,” Electrical Power and Energy Systems, vol. 61, pp. 683–690, 2014.
[2] H. Yassami, A. Darabi, S.M.R. Rafiei, “Power system stabilizer design using Strength Pareto multi-objective optimization approach,” Electric Power Systems Research, vol. 80, no. 7, pp. 838-846, 2010.
[3] Junbo Zhang, C. Y. Chung, Yingduo Han, “A Novel Modal Decomposition Control and Its Application to PSS Design for Damping Interarea Oscillations in Power Systems,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2015-2025, 2012.
[4] D. K. Chaturvedi, O. P. Malik, “Generalized Neuron-Based Adaptive PSS for Multimachine Environment,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 358-366, 2005.
[5] Sheng-Kuan Wang, “A Novel Objective Function and Algorithm for Optimal PSS Parameter Design in a Multi-Machine Power System,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 522-531, 2013.
[6] Chitara, Dhanraj, K. R. Niazi, Anil Swarnkar, and Nikhil Gupta. “Robust tuning of multimachine power system Stabilizer via Cuckoo Search Optimization Algorithm,” In Power Systems (ICPS), pp. 1-6. IEEE, 2016.
[7] Jagadeesh, Pothula, and M. Sai Veerraju. “Particle swarm optimization based power system stabilizer for SMIB system,” In Emerging Trends in Engineering, Technology and Science (ICETETS), International Conference on, pp. 1-6. IEEE, 2016.
[8] Islam, Naz Niamul, M. A. Hannan, Hussain Shareef, and Azah Mohamed. “An application of backtracking search algorithm in designing power system stabilizers for large multi-machine system,” Neurocomputing, pp. 175-184, 2017.
[9] Rahmatian, Meysam, et al. “An approach to improve the pss performance and tuning process considering uncertainty in excitation system model using a novel grouping scheme,” Power System Technology (POWERCON), IEEE, 2016.
[10] غلامرضا صیاد، امین خدابخشیان و رحمت‌الله هوشمند «طراحی پایدارساز سیستم قدرت برای توربین‌های بادی مجهز به ژنراتور القایی دو تغذیه به روش کلاسیک و الگوریتم ژنتیک»، مجله مهندسی برق دانشگاه تبریز، جلد 39، شماره 1، صفحات 23-13، 1388.
[11] محمد مرادی و امیرحسین ابوالمعصومی، « طراحی پایدارساز غیرخطی فازی برای سیستمهای قدرت دارای تأخیر زمانی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحات 709-697، 1396.
[12] Chung, C. Y., K. W. Wang, C. T. Tse, X. Y. Bian, and A. K. David. “Probabilistic eigenvalue sensitivity analysis and PSS design in multimachine systems,” IEEE Transactions on Power Systems, vol. 18, no. 4, pp. 1439-1445, 2003.
[13] Wang, K. W., C. Y. Chung, C. T. Tse, and K. M. Tsang. “Probabilistic eigenvalue sensitivity indices for robust PSS site selection,” IEE Proceedings-Generation, Transmission and Distribution, vol. 148, no. 6, pp. 603-609, 2001.
[14] Tse, C. T., K. W. Wang, C. Y. Chung, and K. M. Tsang. “Parameter optimisation of robust power system stabilisers by probabilistic approach,” IEE Proceedings-Generation, Transmission and Distribution, vol. 147, no. 2, pp. 69-75, 2000.
[15] C. Y. Chung, K. W. Wang, C. T. Tse, R. Niu, “Power-System Stabilizer (PSS) Design by Probabilistic Sensitivity Indexes (PSIs),” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 688-693, 2002.
[16] K.W. Wang, C.Y. Chung, C.T. Tse, K.M. Tsang, “Probabilistic eigenvalue sensitivity indices for robust PSS site selection,” IEEE Transmission and Distribution, vol. 148, no. 6, pp. 603 – 609, 2001.
[17] Tse, C. T., K. W. Wang, C. Y. Chung, and K. M. Tsang. “Robust PSS design considering multi-operating conditions,” In Electric Utility Deregulation and Restructuring and Power Technologies International Conference on, pp. 465-470. IEEE, 2000.
[18] J.L. Rueda, D.G. Colome, I. Erlich, “Assessment and Enhancement of Small Signal Stability Considering Uncertainties,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 198 – 207, 2009.
[19] Ahmadi, H., and H. Seifi. “Probabilistic tuning of Power System Stabilizers considering the wind farm generation uncertainty,” International Journal of Electrical Power & Energy Systems, vol. 63, pp. 565-576, 2014.
[20] Wang, Chen, et al. “Modeling analysis in power system small signal stability considering uncertainty of wind generation,” Power and Energy Society General Meeting, IEEE, pp. 1-7, 2010.
[21] Bian, X. Y., X. X. Huang, K. C. Wong, K. L. Lo, Yang Fu, and S. H. Xuan. “Improvement on probabilistic small-signal stability of power system with large-scale wind farm integration,” International Journal of Electrical Power & Energy Systems, vol. 61, pp. 482-488, 2014.
[22] Wang, Zhen, Deqiang Gan, C. Y. Chung, K. P. Wong, and Chen Shen. “Robust PSS design considering power system contingencies based on a recursive PSO,” In Intelligent Control and Automation (WCICA), 2010 8th World Congress on, pp. 668-675. IEEE, 2010.
[23] Konara, A. I., U. D. Annakkage, and Bagen Bagen. “The probabilistic approach to determine the reliability of synchrophasor-based damping controllers,” In Probabilistic Methods Applied to Power Systems (PMAPS), 2016 International Conference on, pp. 1-5. IEEE, 2016.
[24] Sauer, Peter W., and M. A. Pai. “Power system dynamics and stability,” Urbana, 1998.
[25] Kundur, Prabha. ”Power system stability and control,” Edited by Neal J. Balu, and Mark G. Lauby. Vol. 7. New York: McGraw-hill, 1994.
[26] Abdel-Magid, Y. L., and M. A. Abido. “Optimal multiobjective design of robust power system stabilizers using genetic algorithms,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1125-1132, 2003.
[27] مصطفی عباسی کیا، الگوریتم‌های فرا اکتشافی الگوریتم ژنتیک، تهران، کتابخانه وی کیو، 1388.
[28] Panda, Sidhartha, and Narayana Prasad Padhy. “MATLAB/SIMULINK based model of single-machine infinite-bus with TCSC for stability studies and tuning employing GA,” International Journal of Computer Science and Engineering, vol. 1, no. 1, pp. 50-59, 2007.
[29] Abdel-Magid, Y. L., and M. A. Abido. “Optimal multiobjective design of robust power system stabilizers using genetic algorithms,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1125-1132, 2003.
[30] Khodabakhshian, Amin, and Reza Hemmati. “Multi-machine power system stabilizer design by using cultural algorithms,” International Journal of Electrical Power & Energy Systems, vol. 44, no. 1, pp. 571-580, 2013.
[31] Yassami, H., A. Darabi, and S. M. R. Rafiei. “Power system stabilizer design using Strength Pareto multi-objective optimization approach”, Electric Power Systems Research, vol. 80, no. 7, pp. 838-846, 2010.
[32] Padiyar, K. R. “Power system dynamics,” BS Publ, 2008.