طراحی کنترل‌کننده توان و بهبود میرایی نوسانات پیچشی در توربین بادی DFIG-710 kW نصب شده در سایت بینالود

نویسندگان

1 عضو هیئت علمی دانشگاه کاشان

2 دانشجوی کارشناسی ارشد دانشگاه کاشان

چکیده

چکیده: سیـستم تحت­مطالعه در ایـن مقاله یک توربین-ژنراتور واقعـی 710 کیلو وات DFIG است که اخیراً در سایت بینالود نصب شده است. اندازه­گیری­ها و مشاهدات عینی از توربین مذکور نشان داده که در سرعت­های بالای باد، نوسان­های الکترومکانیکی با فرکانس 2 هرتز در سیستم مکانیکی ظاهر می­شود که باعث لرزش توربین می­گردد. کنترل توربین مذکور بر مبنای کنـترل تـوان و بـر اسـاس یـک منحنی تـوان-سـرعت از پیش­تعیین­شده توسط کارخانه سازنده صورت می­گیرد. در این مقاله هدف تحلیل منشأ و علت پیدایش این نوسان­ها است. بنابراین در ابتدا به طراحی سیستم کنترل توان توربین-ژنراتور مذکور بر اساس منحنی توان-سرعت مختص توربین پرداخته می­شود. در ادامه مودهای مکانیکی سیستم تحت شرایط بهره­برداری و سرعت­های مختلف باد استخراج گردیده و مشخص شده که در بعضی نقاط کار نوسانات فرکانس پایین (حدوداً 2 هرتز) در پاسخ توان، سرعت و گشتاور پیچشی ژنراتور ظاهر می­شود. در ادامه برای بهبود میرایی مودهای پیچشی، یک کنترل­کننده کمکی پایدارساز بنام پایدارساز نوسانات پیچشی (TOS) پیشنهاد می­شود. در پایان نتایج شبیه­سازی برای سیستم تحت­مطالعه آورده می­شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Power controller design and damping improvement of torsional oscillations in the 710 kW DFIG based wind turbine installed at the Binalood site

چکیده [English]

Abstract: The system under study in this paper is a real 710 kW DFIG based wind turbine installed in the binalood site. Based on the measurements and observations of the turbine, at high wind speeds, electromechanical oscillations with frequency of 2 Hz apear on the mechanical system leading to turbine vibration. Control of the wind turbine is carried out based on the power control through a predefined power-speed curve provided by the wind turbine manufacture. The purpose of this paper is to find out the nature and reason of the above mentioned electromechanical oscillations. Hence, the paper first deals with the power control design based on the corresponding power-speed curve. Then, mechanical modes of the system under different operating conditions and wind speeds are extracted. It is shown that at some operating points, low frequency oscillations with frequency of 2 Hz appear on the generator power, generator speed and shaft torsional torque. Next, for improving the damping of the torsional modes, an auxiliary stabilizer control, known as torsional oscillations stabilizer (TOS), is proposed. At the end, simulation results for the system under study are presented.

کلیدواژه‌ها [English]

  • Keywords: DFIG based wind turbine
  • torsional oscillations
  • torsional oscillations stabilizer
[1] C. Harini, N. K. Kumari, and G. S. Raju, “Analysis of wind turbine driven doubly fed induction generator,” Int. Conf. Electrical Energy Systems (ICEES), pp. 246-251, 2011.
[2] E. Muljadi, C. P. Butterfield, B. Parsons, and A. Ellis, “Effect of variable speed wind turbine generator on stability of a weak grid,” IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 29-36, 2007.
[3] F. M. Hughes, O. Anaya-Lara, N. Jenkins, and G. Strbac, “A power system stabilizer for DFIG-based wind generation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 763-772, 2006.
[4] G. Tsourakis, B. M. Nomikos, and C. D. Vournas, “Contribution of doubly fed wind generators to oscillation damping,” IEEE Trans. Energy Convers., vol. 2, pp. 783-791, 2009.
[5] S. Yuanzhang, W. Lixin, L. Guojie, and L. Jin, “A review on analysis and control of small signal stability of power systems with large scale integration of wind power,” Int. Conf. Power System Technology (POWERCON), pp. 1-6, 2010.
[6] T. Ackerman, Wind Power in Power Systems, Wiley Publishing, 2005.
[7] A. Tabesh, and R. Iravani, “Transient behavior of a fixed-speed grid-connected wind farm,” Proc. Int. Conf. Power Systems Transients, Montreal, Canada, pp. 1-5, 2005.
[8] G. Ramtharan, N. Jenkins, O. Anaya-Lara, and E. Bossanyi, “Influence of rotor structural dynamics representations on the electrical transient performance of FSIG and DFIG wind turbines,” Wind Energy, vol. 10, pp. 293-301, 2007.
[9] سعـید ابـاذری و امید مـرادی، «بهبـود میـرایـی نـوسـانـات سیستم قـدرت بـا به­کارگیری UPFC و تنظیم پارامترهای کنترل‌کننده بر اساس یک الگوریتم جدید PSO،» مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، 1395.
[10] L. Hui, L. Shengquan, and J. Haiting, “Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system,” Electrical Power and Energy Systems, vol. 61, pp. 279-287, 2014.
[11] M. Mokhtari, J. Khazaei, and D. Nazarpour, “Sub-synchronous resonance damping via doubly fed induction generator,” Electrical Power and Energy Systems, vol. 53, pp. 876-883, 2013.
[12] J. Licari, C. E. Ugalde-Loo, J. B. Ekanayake, and N. Jenkins, “Comparison of the performance and stability of two torsional vibration dampers for variable-speed wind turbines,” Wind Energy, vol. 18, pp. 1545-1559, 2015.
[13] W. N. White, F. Fateh, and Z. Yu, “Torsional resonance active damping in grid tied wind turbines with gearbox, DFIG, and power converters,” American Control Conf., Chicago, IL, USA, 2015.
[14] L. Chen, H. Xu, and J. Wenske, “Active damping of torsional vibrations in the drive train of a DFIG wind turbine,” Proc. Int. Conf. Renewable Energies and Power Quality, Cordoba, Spain, April 2014.
[15] B. Badrzadeh, S. K. Salman, and K. S. Smith, “Assessment and enhancement of grid fault induced torsional oscillations for Induction Generator-based wind turbines,” Power Systems Conf. and Exposition, Seattle, WA, pp. 1-7, 2009.
[16] S. M. Muyeen, M. H. Ali, R. Takahashi, and T. Murata, “Blade-shaft torsional oscillation minimization of wind turbine generator system by using STATCOM/ESS,” Proc. Power Tech. Conf., Lausanne, pp. 184-189, 2007.
[17] M. S. El-Moursi, B. Bak-Jensen, and M. H. Abdel-Rahman, “Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind park,” IEEE Trans. Power Elec., vol. 25, no. 2, pp. 429-441, 2010.
[18] M. S. El-Moursi, and V. Khadkikar, “Novel control strategies for SSR mitigation and damping power system oscillations in a series compensated wind park,” Proc. 38th annual Conf. Industrial Elec. Society, Montreal, QC, pp. 5335-5342, 2012.
[19] A. F. Abdou, A. Abu-Siada, and H. R. Pota, “Damping of sub synchronous oscillations and improve transient stability for wind farms,” Innovative Smart Grid Technologies Asia (ISGT) Conf., IEEE PES, pp. 1-6, 2011.
[20] T. Lei, M. Bames, and M. Ozakturk, “Doubly-fed induction generator wind turbine modelling for detailed electromagnetic system studies,” IET Renew. Power Gener., vol. 7, no. 2, pp. 180-189, 2013.
[21] L. Fan, H. Yin, and Z. Miao, “On active/reactive power modulation of DFIG-based wind generation for inter area oscillation damping,” IEEE Trans. Energy Conv., vol. 26, no. 2, pp. 513-521, 2011.
[22] W. N. White, Z. Yu, and C. Lucero, “Active damping of torsional resonance in wind turbine drivetrains,” Proc. Ind. Elec. Society Conf., Dallas, TX, pp. 1957-1963, 2014.
[23] B. Badrzadeh, and S. K. Salman, “Enhancement of fault ride-through capability and damping of torsional oscillations for a distribution system comprising induction and synchronous generators,” Proc. Sustainable Alternative Energy Conf., Valencia, Spain,  pp. 1-7, 2009.
[24] A. E. Leon, J. M. Mauricio, and J. A. Solsona, “Sub synchronous resonance mitigation using variable speed wind energy conversion systems,” IET Gener. Transm. Distrib., vol. 7, no. 5, pp. 511-525, 2013.
[25] M. Rahimi, and M. Parniani, “Efficient control scheme of wind turbines with doubly-fed induction generators for low voltage ride-through capability enhancement,” IET Renew. Power Gener., vol. 4, no. 3, pp. 242-252, 2010.
[26] میلاد دلالی و علیرضا جلیلیان، «محاسبه آلودگی هارمونیکی و میان‌هارمونیکی ژنراتورهای القائی دوس تغذیه بادی با استفاده از یک روش ترکیبی،» مجله مهندسی برق دانشگاه تبریز، دوره 42، شماره 2، صفحه 25-37، 1391.
[27] M. Rahimi, and M. Parniani, “Dynamic behavior analysis of doubly-fed induction generator wind turbines –The influence of rotor and speed controller parameters,” Electrical Power and Energy Systems, vol. 32, pp. 464-477, 2010.
[28] M. Rahimi, “Drive train dynamics assessment and speed controller design in variable speed wind turbines,” Renewable Energy, Elsevier, vol. 89, pp. 716-729, 2016.