[1] A. Rabiee, A. Soroudi, B. Mohammadi-Ivatloo and M. Parniani, “Corrective voltage control scheme considering demand response and stochastic wind power,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 2965-2973, 2014.
[2] A. Rabiee, A. Soroudi, and A. Keane, “Information gap decision theory based OPF with HVDC connected wind farms,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3396-3406, 2015.
[3] M. J. Hossain, H. R. Pota, M. A. Mahmud, and R. Ramos, “Investigation of the impacts of large-scale wind power penetration on the angle and voltage stability of power systems,” IEEE Systems Journal, vol. 6, no. 1, pp. 76-84, 2012.
[4] C. M. Affonso, L. C. Da Silva, F. G. Lima, and S. Soares, “MW and MVar management on supply and demand side for meeting voltage stability margin criteria,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1538-1545, 2004.
[5] E. Vittal, M. O'Malley, and A. Keane, “A steady-state voltage stability analysis of power systems with high penetrations of wind,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 433-442, 2010.
[6] W. Rosehart, C. Canizares, and V. Quintana, “Multiobjective optimal power flows to evaluate voltage security costs in power networks,” IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 578-587, 2003.
[7] فرید کربلایی، شهریار عباسی و حسین صابری، «محاسبه سریع و دقیق حاشیه پایداری ولتاژ با تقریب منحنی PV،» مجلـه مهندسـی بـرق دانشـگاه تبریـز، دوره 44، شماره 3، صفحه 33-40، 1393.
[8] A. Rabiee, and M. Parniani, “Voltage security constrained multi-period optimal reactive power flowusing benders and optimality condition decompositions,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 696-708, 2013.
[9] V. Kumar, K. K. Reddy, and D. Thukaram, “Coordination of reactive power in grid-connected wind farms for voltage stability enhancement,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2381-2390, 2014.
[10] A. Rabiee, M. Parvania, M. Vanouni, M. Parniani, and M. Fotuhi-Firuzabad, “Comprehensive control framework for ensuring loading margin of power systems considering demand-side participation,” IET Generation, Transmission & Distribution, vol. 6, no. 12, pp. 1189-1201, 2012.
[11] R. Al Abri, E. F. El-Saadany, and Y. M. Atwa, “Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 326-334, 2013.
[12] A. Soroudi, B. Mohammadi-Ivatloo, and A. Rabiee, “Energy hub management with intermittent wind power,”
Green Energy and Technology,
ed., Springer, pp. 413-438, 2014.
[13] A. Rabiee, and A. Soroudi, “Stochastic multiperiod OPF model of power systems with HVDC-connected intermittent wind power generation,” IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 336-344, 2014.
[14] E. M. Constantinescu, V. M. Zavala, M. Rocklin, S. Lee, and M. Anitescu, “A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation,” IEEE Transactions on Power Systems, vol. 26, no 1, pp. 431-441, 2011.
[15] J. Wang, M. Shahidehpour, and Z. Li, “Security-constrained unit commitment with volatile windpower generation,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1319-1327, 2008.
[16] B. Ayyub, “Applied research in uncertainty modeling and analysis,” Springer Science & Business Media, vol. 20, 2007.
[17] امیرحسین زارع نیستانک، رحمتا... هوشمند و معین پرستگاری، «بهرهبرداری بهینه از نیروگاههای بادی با استفاده از نیروگاههای تلمبهای- ذخیرهای بهمنظور کاهش عدمقطعیت در عملکرد آنان در بازار برق،» مجلـه مهندسـی بـرق دانشـگاه تبریـز، جلد 41، شماره 2، صفحه 52-59، ١٣۹۱.
[18] A. Soroudi, and T. Amraee, “Decision making under uncertainty in energy systems: state of theart,” Renewable and Sustainable Energy Reviews, vol. 28, pp. 376-384, 2013.
[19] A. Soroudi, and M. Ehsan, “IGDT based robust decision making tool for DNOs in load procurement under severe uncertainty,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 886-895, 2013.
[20] K. Zare, M. P. Moghaddam, and M. K. Sheikh-el-Eslami, “Electricity procurement for large consumers based on Information Gap Decision Theory,” Energy Policy, vol. 38, no. 1, pp. 234-242, 2010.
[21] B. Mohammadi-Ivatloo, H. Zareipour, N. Amjady, and M. Ehsan, “Application of information-gap decision theory to risk-constrained self-scheduling of GenCos,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1093-1102, 2013.
[22] M. P. Cheong, D. Berleant, and G. Sheblé, “Information gap decision theory as a tool for strategic bidding in competitive electricity markets,” IEEE International Conference on Power Systems, pp. 421-426, 2004.
[23] K. Zare, M. P. Moghaddam, and M. K. Sheykh-el-Eslami, “Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology,” Energy, vol. 35, no. 7, pp. 2999-3007, 2010.
[24] K. Zare, M. P. Moghaddam, and M. K. Sheykh-el-Eslami, “Electricity procurement for large consumers based on information gap decision theory,” Energy Policy, vol. 38, pp. 234-242, 2010.
[25] S. Nojavan, K. Zare, and M. A. Ashpazi, “A hybrid approach based on IGDT–MPSO method for optimal bidding strategy of price-taker generation station in day-ahead electricity market,” International Journal of Electrical Power & Energy Systems, vol. 69, pp. 335-343, 2015.
[26] M. Moradi-Dalvand, B. Mohammadi-Ivatloo, N. Amjady, H. Zareipour, and A. Mazhab-Jafari, “Self-scheduling of a wind producer based on Information Gap Decision Theory,” Energy, vol. 81, pp. 588-600, 2015.
[27] Y. Ben-Haim, Info-gap Decision Theory: Decisions under Severe Uncertainty, Academic Press, 2006.
[28] R. J. Avalos, C. A. Ca˜nizares, F. Milano, and A. J. Conejo, “Equivalency of continuation and optimization methods to determine saddle-node andlimit-induced bifurcations in power systems,” IEEE Transactions on Circuits and Systems-I, vol. 56, no. 1, pp. 210-223, 2009.
[29] GAMS, A User Guide, New York, NY, USA, 2008.