[1] L. A. Schieve, S. A. Rasmussen, G. M. Buck, D. E. Schemed, M. A. Reynolds and V. C. Wright, “Are children born after assisted reproductive technology at increased risk for adverse health outcomes,” Obstetrics & Gynecology, vol. 103, no. 6, pp. 1154–1163, 2004.
[2] J. E. Swain, D. Lai, S. Takayama and G. D. Smith, “Thinking big by thinking small: application of microfluidic technology to improve ART,” Lab on a chip, vol.13, no. 7, pp.1213-1224, 2013.
[3] D. J. Beebe, I. K. Glasgow and M. B. Wheeler, “Microfluidic embryo and/or oocyte handling device and method,” U. S. Patent, no. US6193647 B1, 2001.
[4] Y. Heo, Improvement of In Vitro Fertilization (IVF) Technology through Microfluidics, Ph.D. Thesis, University of Michigan, Michigan, 2008.
[5] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 1, pp. 368-373, 2006.
[6] A. J. Tomlinson, N. A. Guzman and S. Naylor, “Enhancement of concentration limits of detection in CE and GEMS: A review of on-line sample extraction, cleanup, analyte preconcentration, and microreactor technology,” Journal of Capillary Electrophoresis, vol. 2, no. 6, pp. 247-266, 1995.
[7] D. J. Beebe, G. A. Mensing and G. Walker, “M. Physics and applications of microfluidics in biology,” Annual Review of Biomedical Engineering, vol. 4, no. 1, pp. 261-286, 2002.
[8] J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, A CRC Press, ch. 2, pp. 40-47, 2003.
[9] H. Singh, E. S. Ang, T. T. Lim and D. W. Hutmacher, “Flow modeling in a novel non-perfusion conical bioreactor,” Biotechnology and Bioengineering, vol. 97, no. 5, pp. 1291-1299, 2007.
[10] A. M. Rocha and G. D. Smith, “Culture systems: Fluid dynamic embryo culture systems (microfluidics.),” Methods in Molecular Biology, vol. 912, pp. 355-365, 2012.
[11] T. C. Esteves, F. Rossem, V. Nordhoff, S. Schlatt, M. Boiani and S. L. Gac, “A microfluidic system supports single mouse embryo culture leading to full-term development,” RSC Advances, vol. 3, no. 48, pp. 26451–26458, 2013.
[12] A. Manbachi, S. Shrivastava, M. Cioffi, B. G. Chung, M. Moretti, U. Demirci, M. Yliperttula and A. Khademhosseini, “Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels,” Lab Chip, vol. 8, no. 5, pp. 747–754, 2008.
[13] Y. Xie, F. Wang, W. Zhong, E. Puscheck, H. Shen and D. A Rappolee, “Shear stress induces preimplantation embryo death that is delayed by the zona pellusida and associated with stress-activated protein kinase –mediated apoptosis,” Biology of Reproduction, vol. 75, no. 1, pp. 45-55, 2006.
[14] P. D. Gaver and S. M. Kute, “A Theoretical Model Study of the Influence of Fluid Stresses on a Cell Adhering to a Microchannel Wall,” Biophysical Journal, vol. 75, pp. 721–733, 1998.
[15] سیاوش زرگری، طراحی و امکانسنجی ساخت یک Lab on Module بـرای استفـاده در روشهـای کمکبـاروری (ART)، پـایـاننامه کارشناسیارشد، دانشگاه تبریز، تبریز، 102، 1393.