طراحی یک روش کنترل مد لغزشی انتگرالی تطبیقی برای پایدارسازی زمان محدود و مقاوم پرنده چهارملخه

نویسندگان

دانشگاه صنعتی همدان - دانشکده مهندسی برق

چکیده

در این مقاله، پایدارسازی زمان محدود، برای یک ربات پرنده چهارملخه (Quadrotor) بر مبنای یک روش کنترل مد لغزشی انتگرالی تطبیقی با سطح لغزش ترمینال غیر تکین ارائه شده است. در ابتدا مدل سیستم معرفی شده و به دو سیستم با تحریک کامل و با تحریک محدود تقسیم می‌شود. سپس کنترل‌کننده جدیدی بر مبنای هندسه همگنی و کنترل مد لغزشی برای این دو سیستم ارائه می‌شود. هدف از این روش، ارائه یک کنترل‌کننده مقاوم نسبت به اغتشاش خارجی و عدم قطعیت‌های نامعلوم سیستم است. برای بهبود و بالا بردن دقت ردیابی و عملکرد کنترل‌کننده در حضور اغتشاش خارجی انتگرال خطا به‌عنوان متغیر جدید حالت به مجموعه خطاهای ردیابی سیستم اضافه شده است. در پایان، برای اثبات کارایی و مقاوم بودن کنترل‌کننده پیشنهادی، نتایج شبیه‌سازی و مقایسه در حضور اغتشاشات خارجی و عدم قطعیت ارائه شده است.

کلیدواژه‌ها


[1]     G.V. Raffo, M.G. Ortega, and F.R. Rubio, “An integral predictive/nonlinear H infinity control structure for a quadrotor helicopter,” Automatica, vol. 46, pp. 29-39, 2010.
[2]     L. Garcia-Delgado, A. Dzul, V. Santibáñez, and M. Llama, “Quadrotors formation based on potential functions with obstacle avoidance,” IET Control Theory and Application, vol. 6, no.12, pp. 787-802, 2012.
[3]     G.M. Hoffmann, H. Huang, S.L. Waslander, and C.J. Tomlin, “Quadrotor helicopter flight dynamics and control: theory and experiment,” AIAA Guidance, Navigation and Control Conf. Exhibit, 1–20, South Carolina, USA, 2007.
[4]     I. Fantoni, and R. Lozano, Non-linear Control for Underactuated Mechanical Systems, Springer-Verlag, London, 2002.
[5]     A. Das, K. Subbarao, and F. Lewis, “Dynamic inversion with zero-dynamics stabilization for quadrotor control,” IET Control Theory and Applications, 2008.
[6]     L.D. Cowling, O.A. Yakimenko, J.F. Whidborne, and A.K. Cooke, “A prototype of an autonomous controller for a quadrotor UAV,” Proceedings of ECC07, 2007.
[7]     P. Castillo, R. Lozano and A. E. Dzul, “Modelling and Control of Mini-Flying Machines”, Springer-Verlag, London, 2005.
[8]     V. Mistler, A. Benallegue, and N.K. M’Sirdi, “Exact linearization and non-interacting control of a 4 rotors helicopter via dynamic feedback,” 10th IEEE International Workshop on Robot–Human Interactive Communication Paris, 2001.
[9]     E. Altug, J.P. Ostrowski, and R. Mahony, “Control of a quadrotor helicopter using visual feedback,” IEEE International Conference on Robotics and Automation, 2002.
[10]  B. Bijnens, Q.P. Chu, J.M. Voorsluijs, and J.A. Mulder, “Adaptive feedback linearization flight control for a helicopter UAV,” AIAA Guidance, Navigation, and Control Conference and Exhibit, 15–18, 2005.
[11]  S. Bouabdallah, and R. Siegwart, “Backstepping and sliding-mode techniques applied to an indoor micro quadrotor,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 2247–2252, 2005.
[12]  H. Bouadi, M. Bouchoucha, and M. Tadjine, “Modelling and stabilizing control laws design based on sliding mode for an UAV type-quadrotor,” Engineering Letters, vol. 15, no. 2, 2007.
[13]  D. Lee, H.J. Ki, and S. Sastry, “Feedback linearization vs. adaptive sliding mode control for a quadrotor unmanned aerial vehicle,” International Journal of Control, Automation and Systems, vol. 7, no. 3, pp. 419-428, 2009.
[14]  L. Besnarda, Y.B. Shtessel, and B. Landrum, “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer,” Journal of the Franklin Institute, vol. 349, pp. 658-684, 2012.
[15]  E.H. Zheng, L.L. Xiong, and L.L. Luo, "Second order sliding mode control for a quadrotor," ISA Transactions, 2014.
[16]  L. Luque-Vega, B. Castillo-Toledo, and A.G. Loukianov, “Robust block second order sliding mode control for a quadrotor,” Journal of the Franklin Institute, vol. 349, no. 2, pp. 719–39, 2012.
[17]  A. Benallegue, A. Mokhtari, and L. Fridman, “High-order sliding-mode observer for a quadrotor UAV,” International Journal of Robust Nonlinear Control, vol. 18, pp. 427–440, 2008.
[18]  L. Derafa, A. Benallegue, and L. Fridman, “Super twisting control algorithm for the attitude tracking of a four rotors UAV,” Journal of the Franklin Institute, vol. 349, no. 2, pp. 685–99, 2012.
[19]  R. Xu, and Ü. Özgüner, “Sliding mode control of a class of underactuated systems,” Automatica, vol. 44, pp. 233–41, 2010.
[20]  J.J. Xiong, and E.H. Zheng, “Position and attitude tracking control for a quadrotor UAV,” ISA Transactions, vol. 53, no. 3, pp. 725-731, 2014.
[21]  S.S. Chong, X. Yu, and M. Zhihong, “A robust adaptive sliding mode controller for robotic manipulators,” IEEE Workshop on Variable Structure Systems, pp. 31-35, 1996.
[22]  S.P. Bhat, and D.S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM Journal of Control and Optimization, vol. 38, pp. 751–766, 1996.
[23]  S.P. Bhat, and D.S. Bernstein, “Geometric homogeneity with applications to finite-time stability, Mathematics of Control,” Signals and Systems, vol. 17, no. 2, pp. 101 – 127, 2005.
[24]  F. Plestan, Y. Shtessel, V. Bregeault, and A. poznyak, “New methodologies for adaptive sliding mode control”, International Journal of Control, vol. 9, no. 83, pp. 1907-1919, 2010.
[25]  S.P. Bhat, and D.S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM Journal of Control and Optimization, vol. 38, pp. 751–766, 2003.
[26]  G. Carrillo, R.L.  Dzul López, A.E. Lozano,andR.C. Pégard, 213, Quad Rotorcraft Control, Springer publishing, 2013.
[27]  Y. Xia, K. Lu, Z. Zhu, and M. Fu, “Adaptive back-stepping sliding mode attitude control of missile systems,” International Journal of Robust and Nonlinear Control, vol. 23, pp. 1966-1717, 2013.
[28]  Zh. Hongmei, and Zh. Guoshan, “Adaptive backstepping sliding mode control for nonlinear systems with input saturation,” Transaction of Tianjin University, vol. 18, pp. 046-051, 2012.
[29]  S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode,” Automatica, vol. 41, pp. 1957–1964, 2005.