[1] R.H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539-550, 1999.
[2] A.J. Annema, B. Nauta, R. van Langevelde, and H. Tuinhout, “Analog circuits in ultra-deep-submicron CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 132-143, 2005.
[3] J.M. Rabaey, F.D. Bernardinis, A.M. Niknejad, B. Nikolic, and A. sangiovanni-Vincentelli, “Embedding mixed-signal design in systems-on-chip,” Proc. IEEE, vol. 94, no. 6, pp. 1070-1088, 2006.
[4] B.D. Sahoo, and B. Razavi, “A 12-bit 200-MHz CMOS ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2366-2380, 2009.
[5] Y. Chiu, P.R. Gray, and B. Nikolic, “A 14-b 12-MS/s CMOS pipelined ADC with over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2139-2151, 2004.
[6] Y.J. Kim, H C. Choi, S.W. Yoo, S.H. Lee, D.Y. Chung, K.H. Moon, H.J. Park, and J.W. Kim, “A re-configurable 0.5 V to 1.2 V, 10 MS/s to 100 MS/s, low-power 10 b 0.13 µm CMOS pipelined ADC,” IEEE Custom Integrated Circuits Conf. (CICC), pp. 185-188, 2007.
[7] I. Ahmed, and D.A. Johns, “A 50-MS/s (35 mW) to 1-kS/s (15µW) power scalable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2446-2455, 2005.
[8] I. Ahmed, and D.A. Johns, “A high bandwidth power scalable sub-sampling 10-bit pipelined ADC with embedded sample and hold,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp. 1638-1647, 2008.
[9] B G. Lee, B M. Min, G. Manganaro, and J.W. Valvano, “A 14-b 100-MS/s pipelined ADC with a merged SHA and first MDAC,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2613-2619, 2008.
[10] S.T. Ryu, B.S. Song, and K. Bacrania, “A 10-bit 50-MS/s pipelined ADC with opamp current reuse,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 475-485, 2007.
[11] J. Hu, N. Dolev, and B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic source follower residue amplification,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1057-1066, 2009.
[12] E. Iroaga, and B. Murmann, “A 12-bit 75-MS/s pipelined ADC using incomplete settling,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 748-756, 2007.
[13] B. Murmann, and B.E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, 2003.
[14] B. Hernes, J. Bjornsen, T.N. Anderson, A. Vinje, H. Korsvoll, F. Telsto, A. Briskemyr, C. Holdo, and O. Moldsvor, “A 92.5 mW 205MS/s 10b pipeline IF ADC implemented in 1.2 v/3.3 v 0.13 micron CMOS,” IEEE Int. Solid-State Circuit Conf. (ISSCC) Dig. Tech. Papers, pp. 462-463, 2007.
[15] I. Ahmed, J. Mulder, and D.A. Johns, “A low-power capacitive charge pump based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1016-1027, 2010.
[16] H.R. Mafi, and A.M. Sodagar, “A background calibration in pipelined ADCs,” Int. J. Electron. Commun., vol. 67, no. 8, pp. 729-732, 2013.
[17] J. Yuan, S.W. Fung, K.Y. Chan, and R. Xu, “A 12-bit 20 MS/s 56.3mW pipelined ADC with interpolation-based nonlinear calibration,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 59, no. 3, pp. 555-565, 2012.
[18] L. Shi, W. Zhao, J. Wu, and C. Chen, “Digital background calibration techniques for pipelined ADC based on comparator dithering,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 59, no. 4, pp. 239-243, 2012.
[19] E. Siragusa, and I. Galton, “A digitally enhanced 1.8-v 15-bit 40-MSample/s CMOS pipelined ADC,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2126-2138, 2004.
[20] A. Verma, and B. Razavi, “A 10-bit 500-MS/s 55-mW CMOS ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3039-3050, 2009.
[21] L. Brooks, and H S. Lee, “Background calibration of pipelined ADCs via decision boundary gap estimation,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 55, no. 10, pp. 2969-2979, 2008.
[22] J.K. Fiorenza, A comparator-based switched-capacitor pipelined analog-to-digital converter, Ph.D. dissertation, Massachusetts Inst. Technol., Cambridge, MA, 2007.
[23] L. Brooks, and H.S. Lee, “A zero-crossing based 8b, 200 MS/s pipelined ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2677-2687, 2007.
[24] L. Brooks, and H S. Lee, “A 12b, 50 MS/s, fully differential zero-crossing based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3329-3343, 2009.
[25] X. Tang, C.T. Ko, and K P. Pun, “A charge-pump and comparator based power-efficient pipelined ADC technique,” Microelectronics J., vol. 43, no. 3, pp. 182-188, 2012.
[26] S.K. Shin, Y S. You, S.H. Lee, K.H. Moon, J.W. Kim, L. Brooks, and H.S. Lee, “A fully differential zero-crossing-based 1.2 V 10b 26MS/s pipelined ADC in 65 nm CMOS,” IEEE Symp. VLSI Circuits (VLSIC), pp. 218-219, 2008.
[27] C. Wulff, and T. Ytterdal, “Comparator-based switched-capacitor pipelined analog-to-digital converter with comparator preset, and comparator delay compensation,” Analog Integrated Circuits and Signal Process., vol. 67, no. 1, pp. 31-40, 2011.
[28] K.L. Lee, and R.G. Meyer, “Low-distortion switched-capacitor filter design techniques,” IEEE J. Solid-State Circuits, vol. 20, no. 6, pp. 1103-1113, 1985.
[29] B. Razavi, Design of analog CMOS integrated circuits, New York, McGraw-Hill, 2000.
[30] M. Dessouky, and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” Electron. Lett., vol. 35, no. 1, pp. 8-10, 1999.
[31] C.Y. Wu, W.S. Wey, and T.C. Yu, “A 1.5 V CMOS balanced differential switched-capacitor filter with internal clock boosters,” IEEE ISCAS, pp. 1025-1028, 1995.
[32] A.M. Abo, and P.R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599-606, 1999.
[33] J. Li, and U.K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1468-1476, 2004.
[34] X. Tang, and K.P. Pun, “Novel overshoot cancellation in comparator-based pipelined ADC,” IEEE ISCAS, pp. 806-809, 2012.