حل مسئله توزیع بار اقتصادی هزینه-آلودگی دینامیک همراه با برنامه پاسخ‌گویی بار اضطراری بهینه تحت قیود اثر نقطه-دریچه و ذخیره چرخان

نویسندگان

دانشگاه رازی - دانشکده فنی و مهندسی

چکیده

توزیع بار اقتصادی هزینه-آلودگی دینامیک (DEED)، یک مسئله بهینه‌سازی چندهدفی است که توان خروجی بهینه ژنراتورهای سیستم را در کل دوره توزیع بار با لحاظ قیود مختلفی مانند بار مورد تقاضا، اثر نقطه-دریچه، نواحی ممنوعه عملکرد و ذخیره چرخان تعیین می‌کند. در این مقاله، مسئله DEED به‌صورت ترکیبی با برنامه پاسخ‌گویی بار اضطراری (EDRP) جهت کمینه کردن هم‌زمان هزینه سوخت و آلودگی و مشخص کردن مبلغ تشویقی بهینه مورد بررسی قرار گرفته است. EDRP یکی از انواع برنامه‌های پاسخ‌گویی بار مبتنی بر تشویق است که در آن به مشترکین مبلغی به‌عنوان تشویق پرداخت می‌شود تا مصرف خود را طی ساعات پیک بار کاهش داده یا به ساعات کم‌باری انتقال دهند. ترکیب مسائل DEED و EDRP یک مسئله بهینه‌سازی غیر خطی پیچیده است که روش‌های معمول قادر به حل آن نیستند. در این مقاله، مسئله فوق توسط چهار الگوریتم فرا ابتکاری مبتنی بر جمعیت حل شده و مدل پیشنهادی روی یک سیستم ده واحدی و برای یک بازه زمانی 24 ساعته پیاده‌سازی شده است. نتایج نشان می‌دهند که مدل ارائه‌شده در کاهش هزینه سوخت و آلودگی و بهبود مشخصات منحنی بار بسیار مؤثر است.

کلیدواژه‌ها


[1] D. He, G. Dong, F. Wang, and Z. Mao, “Optimization of dynamic economic dispatch with valve-point effect using chaotic sequence based differential evolution algorithms,” Energy Conversion and Management, vol. 52, pp. 1026-1032, 2011.
[2] A.M. Elaiw, X. Xia, and A.M. Shehata, “Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with valve-point effects,” Electric Power Systems Research, vol. 103, pp. 192-200, 2013.
[3] M. Basu, “Dynamic economic emission dispatch using non-dominated sorting genetic algorithm-II,” Electrical Power and Energy Systems, vol. 30, pp. 140-149, 2008.
[4] B. Mohammadi-ivatloo, A. Rabiee, A. Soroudi, and M. Ehsan, “Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch,” Energy, vol. 44, pp. 228-240, 2012.
[5] T. Niknam, and F. Golestaneh, “Enhanced adaptive particle swarm optimization algorithm for dynamic economic dispatch of units considering valve point effects and ramp rates,” IET Generation, Transmission and Distribution, vol. 6, no. 5, pp. 424-435, 2013.
[6] T. Niknam, R.A. Abarghooee, and J. Aghaei , “A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch ,” IEEE Power Systems Journal, vol. 28, no. 2, pp. 749-763, 2013.
[7] D.N. Jayakumar, and P. Venkatesh, “Glowworm swarm optimization algorithm with topics for solving multiple objective environmental economic dispatch problem,” Applied Soft Computing, vol. 23, pp. 375-386, 2014.
[8] K. Bhattacharjee, A. Bhattacharya, and S. Halder-nee Dey, “Solution of economic emission load dispatch problems of power systems by real coded chemical reaction algorithm,” Electrical Power and Energy Systems, vol. 59, pp. 176-187, 2014.
[9] N. Pandit, A. Tripathi, S. Tapaswi, and M. Pandit, “θ-multi-objective teaching-learning-based optimization algorithm for dynamic economic emission dispatch,” IEEE Systems Journal, vol. 28, no. 2, pp. 341-352, 2012.
[10] C.X. Guo, J.P. Zhan, and Q.H. Wu, “Dynamic economic emission dispatch based on group search optimizer with multiple producers,” Electric Power Systems Research, vol. 86, pp. 8-16, 2012.
[11] R. Arul, S. Velusami, and G. Ravi, “Self-adaptive differential harmony search algorithm to solve dynamic economic dispatch problem with emission and security constraints,” IEEE 2nd International Conference on Electrical Energy Systems (ICEES), pp. 32-37, 2014.
[12] T. Niknam, R. Azizipanah-Abarghooee, M. Zare, and B. Bahmani Firouzi, “Reserve constrained dynamic environmental/economic dispatch: a new multi-objective self-adaptive learning bat algorithm,” IEEE Systems Journal, pp. 763-776, 2013.
[13] R. Hooshmand, M. Parastegari, and M.J. Morshed, “Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using the hybrid bacterial Foraging-Nelder–Mead algorithm,” Applied Energy, vol. 89, pp. 443-453, 2012.
[14] E. Afzalan, M. Joorabian, “Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable,” Electrical Power and Energy Systems, vol. 52, pp. 55-67, 2013.
[15] M. Ziaii, A. Kazemi, M. Fotuhi Firuzabad, and M. Parvania, “Demand response provision via domestic air conditioner direct load control by the retailers,” Tabriz Journal of Electrical Eng., vol. 42, no. 1, pp. 27-38, 2013.
[16] Y. Chen, and J. Li, “Comparison of security constrained economic dispatch formulations to incorporate reliability standards on demand response resources into Midwest ISO co-optimized energy and ancillary service market,” Electric Power Systems Research, vol. 81, pp. 1786-1795, 2011.
[17] A. Ashfaq, S. Yingyun, and A.Z. Khan, “Optimization of economic dispatch problem integrated with stochastic demand side response,” IEEE International Conference on Intelligent Energy and Power Systems (IEPS), pp. 116-121, 2014.
[18] N.I. Nwulu, and X. Xia, “Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs,” Energy Conversion and Management, vol. 89, pp. 963-974, 2015.
[19] S. Yousefi, M.P. Moghaddam, and V.J. Majd, “Optimal real-time pricing in an agent-based retail market using a comprehensive demand response model,” Energy, vol. 36, pp. 5716-5727, 2011.
[20] H.A. Aalami, M.P. Moghaddam, and G.R. Yousefi, “Demand response modeling considering interruptible /curtail-able loads and capacity market programs,” Applied Energy, vol. 87, pp. 243–250, 2010.
[21]G. Cailian, L. Li, Z. Tieyan, and Z. Yang, “Demand response model and impact studies based on bidirectional interactive of information and electrical energy,” China International Conference on Electricity Distribution, pp. 1-6, 2012.
[22] FERC, Staff Report, Assessment of Demand Response and Advanced Metering, Available at: http://www.ferc.gov/, Dec. 2008.
[23] P.S. Nasab, M. Parastegari, and M. Moallem, “Adopting artificial bee colony algorithm to optimize inductively coupled contactless power transmission systems for EV charging,” Tabriz Journal of Electrical Eng., vol. 43, no.2, pp. 9-20, 2013.
[24]M. Nikzad, and B. Mozafari, “Reliability assessment of incentive- and priced-based demand response programs in restructured power systems,” Electrical Power and Energy Systems, vol. 56, pp. 83-96, 2014.
[25] G.P. Dixit, H.M. Dubey, M. Pandit, and B.K. Panigrahi, “Artificial bee colony optimization for combined economic load and emission dispatch,” International Conference on Sustainable Energy and Intelligent Systems (SEISCON), pp. 340-345, 2011.
[26] J. Sun, V. Palade, X.J. Wu, W. Fang, and Z. Wang, “Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization,” IEEE Transactions On Industrial Informatics, vol. 10, no. 1, pp. 222-232, 2014.
[27] S. Sivasubramani, and K.S. Swarup, “Environmental/economic dispatch using multi-objective harmony search algorithm,” Electric Power Systems Research, vol. 81, pp. 1778-1785, 2011.