Highly efficient SPR sensor based on Al metal and 2D materials

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Sahand University of Technology, Tabriz, 51335-1996 Iran

2 Nano-Optics and Photonics Research Lab (NOPRL), Sahand University of Technology, Tabriz, Iran

Abstract

In this article, the characteristics of the proposed surface plasmon resonance sensor with Kretschmann configuration is investigated. The proposed sensor consists of aluminum metal and two-dimensional materials for which the the number of layers and their thickness have been optimized to achieve the highest sensitivity. In the proposed sensor, the aluminum metal has been used due to its low cost and the two-dimensional materials and transition metal dichalcogenides are used due to their high surface to volume ratio which assist to obtain high sensitivity. The structure comprised of CaF2/Al/Al2O3/2L Graphene/10L Black Phosphorous is the optimal structure. The presented sensor based on surface plasmon resonance, provides sensitivity of S=304 deg/RIU, figure of merit of FOM=194.871 RIU-1, minimum reflectance of Rmin=0.14, and the full width at half maximum of FWHM=1.56 deg and it is usable as a biosensor. The optimization and the study of the proposed structure which is based on angular interogation, has been carried out using the transfer matrix method and implementing Lumerical software.

Keywords

Main Subjects


[1] J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species", Chemical reviews, vol. 108, no. 2, pp. 462-493, 2008.
[2] E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions", science, vol. 311, no. 5758, pp. 189-193, 2006.
[3] A. Srivastava, and Y. K. Prajapati, "Performance analysis of silicon and blue phosphorene/MoS2 hetero-structure based SPR sensor", Photonic Sensors, vol. 9, pp. 284-292, 2019.
[4] S. E. H. Yousuf, M. A. Sakib, and M. Z. Islam, “A high-performance plasmonic nanosensor based on an elliptical nanorod in an MIM configuration”, IEEE Sensors Journal, vol. 18, no.15, pp. 6145-6153, 2018.
[5] P. Sarika, N. Pal, Y. K. Prajapati, and J. P. Saini, "Performance evaluation of SPR biosensor using metamaterial over conventional SPR and graphene based SPR biosensor", In 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 696-701. IEEE, 2018.
[6] J. Homola, S. Y. Sinclair, and G. Günter, "Surface plasmon resonance sensors", Sensors and actuators B: Chemical, vol. 54, no.1-2, pp. 3-15, 1999.
[7] S.A. Zynio, V. S. Anton, R. S. Elena, M. M. Vladimir, and M. S. Yuri, "Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance", Sensors, vol. 2, no. 2 pp. 62-70, 2002.
[8] F. C. Chien, and S. J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes", Biosensors and bioelectronics, vol. 20, no.3, pp. 633-642, 2004.
[9] J. Dostálek, K. Amal, and K. Wolfgang, "Long range surface plasmons for observation of biomolecular binding events at metallic surfaces," Plasmonics, vol. 2, pp. 97-106, 2007.
[10] G. G. Nenninger, P. Tobiška, J. Homola, and S. S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sensors and Actuators B: Chemical, vol. 74, no. 1-3, pp. 145-151, 2001.
[11] B. H. Ong, Y. Xiaocong, C. T. Swee, Z. Jingwen, and M. N. Hui, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sensors and Actuators B: Chemical, vol.114, no. 2, pp. 1028-1034, 2006.
[12] J. Chen, Z. Qian, P. Cheng, T. Chaojun, S. Xueyang, D. Licheng, and P. Gun-Sik, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing", IEEE Photonics Technology Letters, vol. 30, no. 8, pp. 728-731, 2018.
[13] D. Melo, A. Aprígio, T. B. D. Silva, M. F. D, S. Santiago, C. D. S. Moreira, and R. M. S. Cruz, "Theoretical analysis of sensitivity enhancement by graphene usage in optical fiber surface plasmon resonance sensors", IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 5, pp. 1554-1560, 2018.
[14] Shivangani, M. F. Alotaibi, Y. Al-Hadeethi, P.Lohia, S. Singh, D. K. Dwivedi, A. Umar, H. M. Alzayed, H. Algadi, and S. Baskoutas, "Numerical study to enhance the sensitivity of a surface plasmon resonance sensor with BlueP/WS2-covered Al2O3-nickel nanofilms", Nanomaterials, vol. 12, no. 13, p.2205, 2022.
[15] S. Sachin, P. K. Singh, A. Umar, P. Lohia, H. Albargi, L. Castañeda, and D. K. Dwivedi, "2D nanomaterial-based surface plasmon resonance sensors for biosensing applications", Micromachines, vol. 11, no. 8, p.779, 2020..
[16] A. Umar, H. Mazharul, G. A. Shafeeque, H. K. Seo, A. I. Ahmed, M. A. Alhamami, H. Algadi, and Z. A. Ansari, "Label-free myoglobin biosensor based on pure and copper-doped titanium dioxide nanomaterials", Biosensors, vol. 12, no. 12 , p.1151, 2022.
[17] W. M. Mullett, P. L. Edward, and M. Y. Jupiter, "Surface plasmon resonance-based immunoassays", Methods, vol. 22, no.1, pp.77-91, 2000.
[18] Homola, Jiří. "Present and future of surface plasmon resonance biosensors." Analytical and bioanalytical chemistry, vol. 377, pp. 528-539, 2003.
[19] R. C. Jorgenson, and S. Y. Sinclair, "A fiber-optic chemical sensor based on surface plasmon resonance", Sensors and Actuators B: Chemical, vol. 12, no. 3, pp. 213-220, 1993.
[20] G. Dyankov, Z. Mohssin, E. H. Saidi, and M. Bousmina, "Long-range surface plasmon supported by asymmetric bimetallic structure", Plasmonics, vol. 7, no. 3, 479-485, 2012.
[21] J. Rajan, and A. K. Sharma, "Chalcogenide glass prism based SPR sensor with Ag–Au bimetallic nanoparticle alloy in infrared wavelength region", Journal of Optics A: Pure and Applied Optics, vol. 11, no.4, p. 045502, 2009.
[22] G. Dyankov, M. Zekriti, and M. Bousmina, "Dual-mode surface-plasmon sensor based on bimetallic film”, Applied Optics, vol. 51, no.13, pp. 2451-2456, 2012.
[23] S. Singh, S. Pandey, S. Yadav, R. K. Yadav, P. K. Singh, P. Lohia, and D. K. Dwivedi, "Numerical study among Au, Al, and Ag metal-based surface plasmon resonance sensor", Journal of Optics, pp. 1-11, 2023.
[24] P. Narendra, S. Pal, Y. K. Prajapati, and J. P. Saini, "A Comparative Performance Analysis of SPR Biosensor Using Metamaterial and Different Metal Oxides", In Advances in VLSI, Communication, and Signal Processing: Select Proceedings of VCAS 2021, pp. 11-23. Singapore: Springer Nature Singapore, 2022.
[25] K. Bhishma, A. Uniyal, P. Sarkar, A. Pal, and R. B. Yadav, "Sensitivity improvement of surface plasmon resonance sensor for glucose detection in urine samples using heterogeneous layers: an analytical perspective", Journal of Optics, pp.1-11, 2023.
[26] M. Shahriar, A. K. Paul, and K. Chakrabarti, "Detection of hemoglobin in blood and urine glucose level samples using a graphene-coated SPR based biosensor", OSA Continuum, vol. 4, no.8, pp. 2164-2176, 2021.
[27] F. B. Edin, Y. W. Fen, N. A. Omar, J. Y. Liew, W. M. Daniyal, "Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan/graphene quantum dots thin film", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 263, p. 120202, 2021.
[28] Y. Vasimalla, and H. S. Pradhan, "Modeling of a novel SCHOTT B270 prism based SPR sensor using Ag-Si-BP/MXene structure for detection of specific biological samples", Optical and Quantum Electronics, vol. 54, no.10, p. 612, 2022.
[29] H. Xu, W. Leiming, D. Xiaoyu, G. Yanxia, and X. Yuanjiang, "An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure", Journal of Applied Physics, vol. 120, no. 5, 2016.
[30] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X. Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, and K. T. Yong, "Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor", Scientific reports, vol. 6, no. 1 p. 28190, 2016.
[31] A. K. Mishra, and K. M. Satyendra, "Gas sensing in Kretschmann configuration utilizing bi-metallic layer of Rhodium-Silver in visible region", Sensors and Actuators B: Chemical, vol. 237, pp. 969-973, 2016.
[32] M. Wang, H. Yanyan, J. Shouzhen, Z. Chao, Y. Cheng, N. Tingyin, L. Xiaoyun, L. Chonghui, Z. Wenyuan, and M. Baoyuan, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS 2 hybrid nanostructures and Au–Ag bimetallic film", RSC advances, vol. 7, no. 75, pp. 47177-47182, 2017.
[33] X. Zhao, H. Tianye, S. P. Perry, W. Xu, H. Pan, P. Jianxing, W. Yiheng, and C. Zhuo, "Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure", Sensors, vol.18, no. 7, p. 2056, 2018.
[34] K. Kahiai, A. Pourmand, F. Abbasi, "Microfluidic chip for glucose measurement using optical detection with near infrared method", Journal of Electrical Engineering, University of Tabriz, vol. 54, Spring 2024, pp. 67-71.
[35] A. Amini, S. Mahmoudi, "Measurement of light absorption with an absorption analyzer using a multi-wavelength optical method", Journal of Electrical Engineering, University of Tabriz, vol. 50, 2019, pages 555-563.
[36] S. Pal, A. Verma, J. P. Saini, and Y. K. Prajapati, "Sensitivity enhancement using silicon‐black phosphorus‐TDMC coated surface plasmon resonance biosensor", Iet Optoelectronics, vol. 13, no. 4, pp. 196-201, 2019.
[37] J. B. Maurya, Y. K. Prajapati, V. Singh, J. P. Saini, and R. Tripathi, "Performance of graphene–MoS 2 based surface plasmon resonance sensor using silicon layer", Optical and Quantum Electronics, vol. 47, pp. 3599-3611, 2015.
[38] B. Karki, J. Ankit, P. Amrindra, and V. Srivastava, "Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection," Optical and Quantum Electronics, vol. 54, no. 9, pp. 595, 2022.