[1] Q. Kong and H. Zheng, “Study on Automated Alignment Methods for Electric Vehicles Wireless Charging,” in Proceedings - 2022 International Conference on Mechanical, Automation and Electrical Engineering, CMAEE 2022, 2022. doi: 10.1109/CMAEE58250.2022.00038.
[2] علیرضا. حاتمی، پیمان. بیات، پژمان. بیات، و سیدمحمدرضا. طوسی، «ارائه یک استراتژی جدید برای مدیریت انرژی خودروی الکتریکی مبتنی بر مبدل دوطرفه سهدرگاهه و کنترلکننده فازی»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، صفحه 121-137، 1394.
[3] J. Lara, C. Hernández, M. Arjona, L. Masisi, and A. Chandra, “Bidirectional EV charger with ancillary power quality capabilities,” Ing. Investig. Tecnol., vol. 23, no. 1, pp. 1–10, Jan. 2022, doi: 10.22201/fi.25940732e.2022.23.1.008.
[4] C. A. Sam and V. Jegathesan, “Bidirectional integrated on-board chargers for electric vehicles—a review,” Sādhanā, vol. 46, no. 1, p. 26, Dec. 2021, doi: 10.1007/s12046-020-01556-2.
[5] G. Anjinappa, D. B. Prabhakar, and W.-C. Lai, “Bidirectional Converter for Plug-In Hybrid Electric Vehicle On-Board Battery Chargers with Hybrid Technique,” World Electr. Veh. J., vol. 13, no. 11, p. 196, Oct. 2022, doi: 10.3390/wevj13110196.
[6] T. J. C. Sousa, D. Pedrosa, V. Monteiro, and J. L. Afonso, “A Review on Integrated Battery Chargers for Electric Vehicles,” Energies, vol. 15, no. 8, p. 2756, Apr. 2022, doi: 10.3390/en15082756.
[7] U. Mustafa, R. Ahmed, A. Watson, P. Wheeler, N. Ahmed, and P. Dahele, “A Comprehensive Review of Machine-Integrated Electric Vehicle Chargers,” Energies, vol. 16, no. 1, p. 129, Dec. 2022, doi: 10.3390/en16010129.
[8] N. Sakr, D. Sadarnac, and A. Gascher, “A review of on-board integrated chargers for electric vehicles,” in 2014 16th European Conference on Power Electronics and Applications, IEEE, Aug. 2014, pp. 1–10. doi: 10.1109/EPE.2014.6910865.
[9] S. Jaman, S. Chakraborty, D.-D. Tran, T. Geury, M. El Baghdadi, and O. Hegazy, “Review on Integrated On-Board Charger-Traction Systems: V2G Topologies, Control Approaches, Standards and Power Density State-of-the-Art for Electric Vehicle,” Energies, vol. 15, no. 15, p. 5376, Jul. 2022, doi: 10.3390/en15155376.
[10] C. Shi, Y. Tang, and A. Khaligh, “A Three-Phase Integrated Onboard Charger for Plug-In Electric Vehicles,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4716–4725, Jun. 2018, doi: 10.1109/TPEL.2017.2727398.
[11] X. Ruan, X. Wang, D. Pan, D. Yang, W. Li, and C. Bao, Control Techniques for LCL-Type Grid-Connected Inverters. in CPSS Power Electronics Series. Singapore: Springer Singapore, 2018. doi: 10.1007/978-981-10-4277-5.
[12] J. Xu and S. Xie, “LCL-resonance damping strategies for grid-connected inverters with LCL filters : a comprehensive review,” J. Mod. Power Syst. Clean Energy, vol. 6, no. 2, pp. 292–305, 2018, doi: 10.1007/s40565-017-0319-7.
[13] A. Hassannia, S. M. Barakati, and S. H. Torabi, “Robust discrete sliding mode controller design for a single-phase onboard integrated electric vehicle charger with disturbance estimation,” Comput. Electr. Eng., vol. 110, p. 108881, Sep. 2023, doi: 10.1016/j.compeleceng.2023.108881.
[14] C. Saber, D. Labrousse, B. Revol, and A. Gascher, “Challenges Facing PFC of a Single-Phase On-Board Charger for Electric Vehicles Based on a Current Source Active Rectifier Input Stage,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6192–6202, Sep. 2016, doi: 10.1109/TPEL.2015.2500958.
[15] پیمان. حق گویی، داود. عرب خابوری، مهیار. خسروی، «ارائه روشی ترکیبی مبتنی بر رویکرد کنترلی پیشبین مدل بهمنظور کنترل طبقه یکسوساز ترانسفورماتور الکترونیک قدرت»، مجله مهندسی برق دانشگاه تبریز، جلد49، شماره 3، صفحه 1067-1079، 1398.
[16] W.-H. Chen, S. Li, and J. Yang, “Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties,” IET Control Theory Appl., vol. 5, no. 18, pp. 2053–2062, Dec. 2011, doi: 10.1049/iet-cta.2010.0616.
[17] P. Correa, J. Rodriguez, I. Lizama, and D. Andler, “A Predictive Control Scheme for Current-Source Rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1813–1815, May 2009, doi: 10.1109/TIE.2008.2010116.
[18] P. Correa and J. Rodriguez, “A predictive control scheme for current source rectifiers,” in 2008 13th International Power Electronics and Motion Control Conference, IEEE, Sep. 2008, pp. 699–702. doi: 10.1109/EPEPEMC.2008.4635346.
[19] H. Gao, B. Wu, D. Xu, M. Pande, and R. P. Aguilera, “Model predictive control scheme with active damping function for current source rectifiers,” IET Power Electron., vol. 10, no. 7, pp. 717–725, Jun. 2017, doi: 10.1049/iet-pel.2016.0718.
[20] C. Xue, L. Ding, Y. Li, and N. R. Zargari, “Improved Model Predictive Control for High-Power Current-Source Rectifiers under Normal and Distorted Grid Conditions,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 4588–4601, 2020, doi: 10.1109/TPEL.2019.2946251.
[21] Z. Bai, H. Ma, D. Xu, B. Wu, Y. Fang, and Y. Yao, “Resonance Damping and Harmonic Suppression for Grid-Connected Current-Source Converter,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3146–3154, Jul. 2014, doi: 10.1109/TIE.2013.2281173.
[22] C. Xue, L. Ding, X. Wu, Y. Li, and W. Song, “Model Predictive Control for Grid-Connected Current-Source Converter With Enhanced Robustness and Grid-Current Feedback Only,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 5, pp. 5591–5603, Oct. 2022, doi: 10.1109/JESTPE.2022.3162140.
[23] H. M. Shertukde, Digital Control Applications Illustrated with MATLAB. 2015.
[24] F. B. Hildebrand, Introduction to Numerical Analysis. McGraw-Hill, 1956.