[1] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Computers and Electrical Engineering. 40 (2014) 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024.
[2] Y. Hu, Y. Zhang, D. Gong, Multiobjective Particle Swarm Optimization for Feature Selection With Fuzzy Cost, IEEE TRANSACTIONS ON CYBERNETICS. 51 (2021) 874–888. https://doi.org/10.1109/TCYB.2020.3015756.
[3] G. Dhiman, D. Oliva, A. Kaur, K.K. Singh, S. Vimal, A. Sharma, K. Cengiz, BEPO: A novel binary emperor penguin optimizer for automatic feature selection, Knowledge-Based Systems. 211 (2021). https://doi.org/10.1016/j.knosys.2020.106560.
[4] J. Wang, H. Zhang, J. Wang, Y. Pu, N.R. Pal, Feature Selection Using a Neural Network With Group Lasso Regularization and Controlled Redundancy, IEEE Transactions on Neural Networks and Learning Systems. 32 (2021) 1110–1123.
[5] ح. بیاتی، م. دولتشاهی، م. پنیری، انتخاب ویژگی چندبرچسبی با استفاده از الگوریتم بهینه ساز جمعیت رقابتی، مجله علمی رایانش نرم و فناوری اطلاعات. 9 (2020) 56–69.
[6] س. حیدری مقدم بجستانی، س. شعرباف تبریزی ، ع. قاضی خانی ، ارائهی یک روش انتخاب ویژگی جدید مبتنی بر بهینهسازی ازدحام ذرات با استفاده از بهروزرسانی فازی، مجله مهندسی برق دانشگاه تبریز. 50 (2021) 1567–1557.
[7] W. Zhong, X. Chen, F. Nie, J. Zhexue, Adaptive discriminant analysis for semi-supervised feature selection, Information Sciences. 566 (2021) 178–194. https://doi.org/10.1016/j.ins.2021.02.035.
[8] M. Tubishat, S. Ja, M. Alswaitti, S. Mirjalili, Dynamic Salp Swarm Algorithm for Feature Selection, Expert Systems with Applications. 164 (2021) 113873. https://doi.org/https://doi.org/10.1016/j.eswa.2020.113873.
[9] G. ROFFO, S. Melzi, U. Castellani, A. Vinciarelli, M. Cristani, Infinite Feature Selection: a Graph-based Feature Filtering Approach, IEEE Transactions on Pattern Analysis and Machine Intelligence. (2020). https://doi.org/10.1109/TPAMI.2020.3002843.
[10] م. رحمانی نیا، پ. مرادی، م. جلیلی ، یک راهکار انتخاب ویژگی چندهدفه بر اساس اطلاعات متقابل شرطی و نظریه مجموعه پارتو، مجله مهندسی برق دانشگاه تبریز. 50 (2020) 1237–1225.
[11] M. Sharifnezhad, M. Rahmani, A. Professor, H. Ghaffarian, A Distributed Minimum Redundancy Maximum Relevance Feature Selection Approach, Tabriz Journal of Electrical Engineering (TJEE). 51 (2021) 286–293.
[12] Razieh Sheikhpour; Mehdi Agha Sarrama; Sajjad Gharaghani; Mohammad Ali Zare Chahookia, R. Sheikhpour, M.A.M.A. Sarram, S. Gharaghani, M.A.Z.M.A.Z. Chahooki, A Survey on semi-supervised feature selection methods, Pattern Recognition. 64 (2017) 141–158. https://doi.org/10.1016/j.patcog.2016.11.003.
[13] T. Bhadra, S. Bandyopadhyay, Supervised feature selection using integration of densest subgraph finding with floating forward – backward search, Information Sciences. 566 (2021) 1–18. https://doi.org/10.1016/j.ins.2021.02.034.
[14] R. Zhang, H. Zhang, X. Li, S. Yang, Unsupervised Feature Selection With Extended OLSDA via Embedding Nonnegative Manifold Structure, IEEE Transactions on Neural Networks and Learning Systems. (2020) 1–7.
[15] Q. Pang, L. Zhang, Semi-supervised neighborhood discrimination index for feature selection, Knowledge-Based Systems. 204 (2020) 106224. https://doi.org/10.1016/j.knosys.2020.106224.
[16] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Adv Neural Inf Process Syst, 2005: pp. 507–514.
[17] G. Doquire, M. Verleysen, A graph Laplacian based approach to semi-supervised feature selection for regression problems, Neurocomputing. 121 (2013) 5–13.
[18] J. Zhao, K. Lu, X. He, Locality sensitive semi-supervised feature selection, Neurocomputing. 71 (2008) 1842–1849. https://doi.org/10.1016/j.neucom.2007.06.014.
[19] Z. Ma, F. Nie, Y. Yang, J.R.R. Uijlings, N. Sebe, S. Member, A.G. Hauptmann, Discriminating joint feature analysis for multimedia data understanding, IEEE TRANSACTIONS ON MULTIMEDIA. 14 (2012) 1662–1672.
[20] C. Shi, Q. Ruan, G. An, Sparse feature selection based on graph Laplacian for web image annotation, Image and Vision Computing. 32 (2014) 189–201. https://doi.org/10.1016/j.imavis.2013.12.013.
[21] Y. Han, Y. Yang, Y. Yan, Z. Ma, N. Sebe, S. Member, Semisupervised feature selection via spline regression for video semantic recognition, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,. 26 (2015) 252–264.
[22] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological). 58 (1996) 267–288.
[23] S. Foucart, M.-J. Lai, Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0< q<1, Applied and Computational Harmonic Analysis. 26 (2009) 395–407.
[24] R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization, IEEE Signal Processing Letters. 14 (2007) 707–710. https://doi.org/10.1109/LSP.2007.898300.
[25] F. Nie, H. Huang, X. Cai, C.H. Ding, Efficient and robust feature selection via joint ℓ2, 1-norms minimization, in: Adv Neural Inf Process Syst, 2010: pp. 1813–1821.
[26] L. Wang, S. Chen, l2,p-matrix norm and its application in feature selection, ArXiv Preprint ArXiv:1303.3987. (2013).
[27] C. Shi, Q. Ruan, S. Member, G. An, R. Zhao, Hessian semi-supervised sparse feature selection based on L21/2-matrix norm, IEEE Transactions on Multimedia. 17 (2015) 16–28.
[28] C.M. Bishop, Neural networks for pattern recognition, Oxford University Press, 1995.
[29] Q. Gu, Z. Li, J. Han, Generalized Fisher Score for Feature Selection, CoRR. abs/1202.3 (2012).
[30] M. Yang, Y. Chen, G. Ji, Semi_fisher score : a semi-supervised method for feature selection, in: International Conference on Machine Learning and Cybernetics, 2010: pp. 527–532.
[31] S. Lv, H. Jiang, L. Zhao, D. Wang, M. Fan, Manifold based fisher method for semi-supervised feature selection, in: 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2013: pp. 664–668.
[32] L. Chen, R. Huang, W. Huang, Graph-based semi-supervised weighted band selection for classification of hyperspectral data, in: Audio Language and Image Processing (ICALIP), 2010 International Conference On, IEEE, 2010: pp. 1123–1126.
[33] W. Yang, C. Hou, Y. Wu, A semi-supervised method for feature selection, 2011 International Conference on Computational and Information Sciences. (2011) 329–332. https://doi.org/10.1109/ICCIS.2011.54.
[34] Y. Liu, F. Nie, J. Wu, L. Chen, Efficient semi-supervised feature selection with noise insensitive trace ratio criterion, Neurocomputing. 105 (2013) 12–18. https://doi.org/10.1016/j.neucom.2012.05.031.
[35] Y. Liu, F. Nie, J. Wu, L. Chen, Semi-supervised feature selection based on label propagation and subset selection, in: Computer and Information Application (ICCIA), 2010 International Conference On, IEEE, 2010: pp. 293–296.
[36] R. Sheikhpour, M.A. Sarram, S. Gharaghani, M.A.Z. Chahooki, A robust graph-based semi-supervised sparse feature selection method, Information Sciences. 531 (2020) 13–30. https://doi.org/10.1016/j.ins.2020.03.094.
[37] R. Sheikhpour, M.A. Sarram, E. Sheikhpour, Semi-supervised sparse feature selection via graph Laplacian based scatter matrix for regression problems, Information Sciences. 468 (2018) 14–28. https://doi.org/10.1016/j.ins.2018.08.035.
[38] X. Li, Y. Zhang, R. Zhang, Semisupervised Feature Selection via Generalized Uncorrelated Constraint and Manifold Embedding, IEEE Transactions on Neural Networks and Learning Systems. (2021). https://doi.org/10.1109/TNNLS.2021.3069038.
[39] R. Sheikhpour, M.A. Sarram, S. Gharaghani, M.A.Z. Chahooki, Feature selection based on graph Laplacian by using compounds with known and unknown activities, Journal of Chemometrics. (2017). https://doi.org/10.1002/cem.2899.
[40] K.I. Kim, F. Steinke, M. Hein, Semi-supervised Regression using Hessian Energy with an Application to Semi-supervised Dimensionality Reduction, in: Advances in Neural Information Processing Systems (NIPS). MPI for Biological Cybernetics, Germany, 2010: pp. 979–987.
[41] R. Zhang, Y. Zhang, X. Li, Unsupervised Feature Selection via Adaptive Graph Learning and Constraint, IEEE Transactions on Neural Networks and Learning Systems. (2020). https://doi.org/10.1109/TNNLS.2020.3042330.
[42] Z. Wang, F. Nie, L. Tian, R. Wang, X. Li, Discriminative Feature Selection via A Structured Sparse Subspace Learning Module, in: IJCAI, 2020: pp. 3009–3015.