مدل‌سازی بار مولدهای توان پالسی در کاربرد الکتروپوریشن با استفاده از طیف‌سنجی امپدانس سلول‌های نرمال و سرطانی ریه انسان

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی برق و کامپیوتر - دانشگاه کاشان - کاشان - ایران

2 استادیار، دانشکده مهندسی برق و کامپیوتر - دانشگاه کاشان - کاشان - ایران

چکیده

در این مقاله به مدل‌سازی بار مولدهای توان پالسی جهت کاربرد الکتروپوریشن و با استفاده از طیف‌سنجی امپدانس سلول‌های نرمال و سرطانی ریه انسان پرداخته شده است. با وجود تمایزاتی در رفتار الکتریکی سلول‌های نرمال و سرطانی، مدل‌سازی الکتریکی سلول‌ها می‌تواند در تشخیص سرطان و ایجاد انتخاب پذیری در درمان (مرگ در سلول‌های سرطانی و عدم آسیب به سلول‌های نرمال) مؤثر باشد. همچنین با توجه به تغییرات گسترده امپدانس سلول‌ها تحت شرایط مختلف و وابستگی ساختارهای مولدهای پالسی به امپدانس بار، مدل‌سازی بار می‌تواند در طراحی مولدهای پالسی برای ایجاد پارامترهای پالس با بیشترین اثرگذاری، بسیار مفید باشد. در این مقاله، امپدانس نمونه‌های زیستی واقع در کووت‌های الکتروپوریشن در فرکانس‌های مختلف اندازه‌گیری شده و درنهایت به جهت تجزیه‌وتحلیل کمی ویژگی‌های الکتریکی بار، یک مدار معادل الکتریکی دقیق ارائه می‌گردد. درواقع مدل الکتریکی ارائه شده، متمرکز به سلول‌ها نبوده و برای مجموعه کووت و محتویات داخلی آن است. این مدل با در نظر گرفتن اثر خازن دولایه الکتریکی و اثرات پارازیتیک و بسط بازه فرکانسی از 100 هرتز تا 500 مگاهرتز ارائه شده است. نتایج نشان می‌دهد، مدل الکتریکی ارائه‌شده با دقت نسبتاً خوبی، با اندازه‌گیری‌های امپدانس انجام‌شده برای نمونه‌های مختلف مطابقت دارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Load Modeling of The Pulsed Power Generators for Electroporation Using Impedance Spectroscopy of Human Lung Normal and Cancer Cells

نویسندگان [English]

  • A. Aziznia 1
  • M. A. Hejazi 2
1 Faculty of Electrical and Computer engineering, University of Kashan, Kashan, Iran
2 Faculty of Electrical and Computer engineering, University of Kashan, Kashan, Iran
چکیده [English]

In this paper, the load of the pulsed power generators is modeled using the impedance spectroscopy of human lung normal and cancer cells for electroporation. Due to the differences in the electrical behavior of normal and cancer cells, cell modeling can be used in cancer diagnosis and treatment selectivity (causing cell death in cancer tissues and not damaging the cells, and normal tissues) is effective. Also, due to the wide changes in cell impedance under different conditions and the dependence of pulse generator structures on load impedance, cell modeling can have a significant effect on the design of pulse generators and the creation of pulse parameters with the greatest effect. In this paper, the impedance of biological samples is measured at different frequencies. Finally, for quantitative analysis of the electrical properties of cells, an accurate electrical equivalent circuit is provided for the load. The proposed electrical model is not cell-focused but on the set of cuvette and its internal contents. This electrical model, taking into account the effect of the two-layer electrical capacitor and parasitic effects, and expanding the frequency range from 100 Hz to 500 MHz. The results show that the equivalent electrical circuit provided in most cases with an low error is consistent with the impedance measurements performed for different samples.

کلیدواژه‌ها [English]

  • Impedance spectroscopy
  • Electrical cell modeling
  • Cancer detection and treatment
  • Electroporation
  • Bioelectric
[1]     Farhood, G. Geraily, and A. Alizadeh, “Incidence and mortality of various cancers in Iran and compare to other countries: a review article,” Iranian journal of public health, vol. 47, no. 3, pp. 309, 2018.
[2]     J. Yao, L. Wang, K. Liu, H. Wu, H. Wang, J. Huang, and J. Li, “Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy,” Electrophoresis, vol. 41, no. 16-17, pp. 1425-1432, 2020.
[3]     R. P. Braun, J. Mangana, S. Goldinger, L. French, R. Dummer, and A. A. Marghoob, “Electrical impedance spectroscopy in skin cancer diagnosis,” Dermatologic clinics, vol. 35, no. 4, pp. 489-493, 2017.
[4]     C. J. Trepte, C. R. Phillips, J. Solà, A. Adler, S. A. Haas, M. Rapin, S. H. Böhm, and D. A. Reuter, “Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury,” Critical care, vol. 20, no. 1, pp. 1-9, 2015.
[5]     J. A. Corscaden, Gynecologic cancer: Edinburgh Thomas Nelson & Sons, 1951.
[6]     S. Khan, A. Mahara, E. S. Hyams, A. R. Schned, and R. J. Halter, “Prostate cancer detection using composite impedance metric,” IEEE transactions on medical imaging, vol. 35, no. 12, pp. 2513-2523, 2016.
[7]     C. Murdoch, B. H. Brown, V. Hearnden, P. M. Speight, K. D’Apice, A. M. Hegarty, J. A. Tidy, T. J. Healey, P. E. Highfield, and M. H. Thornhill, “Use of electrical impedance spectroscopy to detect malignant and potentially malignant oral lesions,” International journal of nanomedicine, vol. 9, pp. 4521, 2014.
[8]     مصطفی نظری، «کنترل تطبیقی مدل مرجع بر مبنای معادله ریکاتی وابسته به حالت برای درمان زمان محدود سرطان با استفاده از یک درمان ترکیبی» مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 1، صفحات 380-369، 1397.
[9]     فرزانه جعفرپیشه، حامد خدادادی، «بهینه‌سازی مصرف دارو در درمان سرطان با استفاده از درمان ترکیبی شیمی‌درمانی و ایمنی‌درمانی» مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 4، صفحات 1503-1491، 1397.
[10]   E. W. Lee, S. Thai, and S. T. Kee, “Irreversible electroporation: a novel image-guided cancer therapy,” Gut and liver, vol. 4, no. Suppl 1, pp. S99, 2010.
[11]   H. Akiyama, and R. Heller, Bioelectrics: Springer, 2017.
[12]   Y. Mi, C. Yao, C. Jiang, C. Li, C. Sun, L. Tang, and H. Liu, “A ns-μs duration, millitesla, exponential decay pulsed magnetic fields generator for tumor treatment,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 4, pp. 1111-1118, 2011.
[13]   G. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair, and C. R. Chatwin, “Bioimpedance analysis for the characterization of breast cancer cells in suspension,” IEEE Transactions on biomedical engineering, vol. 59, no. 8, pp. 2321-2329, 2012.
[14]   P. Agoramurthy, and R. Sundararajan, "Electric field distribution of human breast tissue." pp. 1-4.
[15]   D. D. Stupin, E. A. Kuzina, A. A. Abelit, A. K. Emelyanov, D. M. Nikolaev, M. N. Ryazantsev, S. V. Koniakhin, and M. V. Dubina, “Bioimpedance Spectroscopy: Basics and Applications,” ACS Biomaterials Science & Engineering, vol. 7, no. 6, pp. 1962-1986, 2021.
[16]   S. Ren, K. Sun, D. Liu, and F. Dong, “A statistical shape-constrained reconstruction framework for electrical impedance tomography,” IEEE transactions on medical imaging, vol. 38, no. 10, pp. 2400-2410, 2019.
[17]   M. R. Baidillah, A.-A. S. Iman, Y. Sun, and M. Takei, “Electrical impedance spectro-tomography based on dielectric relaxation model,” IEEE Sensors Journal, vol. 17, no. 24, pp. 8251-8262, 2017.
[18]   J. Li, H. Huang, and T. Morita, “Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review,” Sensors and Actuators A: Physical, vol. 292, pp. 39-51, 2019.
[19]   Q. Lu, J. Wen, Y. Hu, K. Chen, H. Bao, and J. Ma, “Novel inertial piezoelectric actuator with high precision and stability based on a two fixed-end beam structure,” Smart Materials and Structures, vol. 28, no. 1, pp. 015030, 2018.
[20]   H. Fricke, “A mathematical treatment of the electric conductivity and capacity of disperse systems II. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency,” Physical Review, vol. 26, no. 5, pp. 678, 1925.
[21]   A. Ivorra, "Tissue electroporation as a bioelectric phenomenon: Basic concepts," Irreversible electroporation, pp. 23-61: Springer, 2010.
[22]   T. García-Sánchez, R. Bragós, and L. M. Mir, “In vitro analysis of various cell lines responses to electroporative electric pulses by means of electrical impedance spectroscopy,” Biosensors and Bioelectronics, vol. 117, pp. 207-216, 2018.
[23]   W. Gu, and Y. Zhao, “Cellular electrical impedance spectroscopy: an emerging technology of microscale biosensors,” Expert review of medical devices, vol. 7, no. 6, pp. 767-779, 2010.
[24]   A. Silve, R. Vezinet, and L. M. Mir, “Nanosecond-duration electric pulse delivery in vitro and in vivo: experimental considerations,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 7, pp. 1945-1954, 2012.
[25]   Available online at: http://fa1.pasteur.ac.ir/Pages.aspx?id=329.
[26]   C. Jiang, R. V. Davalos, and J. C. Bischof, “A review of basic to clinical studies of irreversible electroporation therapy,” IEEE Transactions on biomedical Engineering, vol. 62, no. 1, pp. 4-20, 2014.
[27]   M. Honda, "A Guide to Measurement Technology and Techniques, The Impedance Measurement Handboob," Yokogawa-Hewlett Packard LTD, 1989.
[28]   A. Silve, A. G. Brunet, B. Al-Sakere, A. Ivorra, and L. Mir, “Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: Electropermeabilization-induced electro-desensitization?,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 1840, no. 7, pp. 2139-2151, 2014.
[29]   K. H. Schoenbach, S. Xiao, R. P. Joshi, J. T. Camp, T. Heeren, J. F. Kolb, and S. J. Beebe, “The effect of intense subnanosecond electrical pulses on biological cells,” IEEE Transactions on plasma science, vol. 36, no. 2, pp. 414-422, 2008.
[30]   I. S. Zheludev, "Electrical Conduction and Dielectric Losses," Physics of Crystalline Dielectrics, pp. 455-532: Springer, 1971.
[31]   Y. Feldman, R. Nigmatullin, E. Polygalov, and J. Texter, “Fractal-polarization correction in time domain dielectric spectroscopy,” Physical Review E, vol. 58, no. 6, pp. 7561, 1998.
[32]   K. Ghoshal, S. Chakraborty, C. Das, S. Chattopadhyay, S. Chowdhury, and M. Bhattacharyya, “Dielectric properties of plasma membrane: A signature for dyslipidemia in diabetes mellitus,” Archives of biochemistry and biophysics, vol. 635, pp. 27-36, 2017.
[33]   P. B. Ishai, M. S. Talary, A. Caduff, E. Levy, and Y. Feldman, “Electrode polarization in dielectric measurements: a review,” Measurement science and technology, vol. 24, no. 10, pp. 102001, 2013.
[34]   A. Ivorra, M. Genescà, A. Sola, L. Palacios, R. Villa, G. Hotter, and J. Aguiló, “Bioimpedance dispersion width as a parameter to monitor living tissues,” Physiological measurement, vol. 26, no. 2, pp. S165, 2005.
[35]   L. Redondo, M. Zahyka, and A. Kandratsyeu, “Solid-state generation of high-frequency burst of bipolar pulses for medical applications,” IEEE Transactions on Plasma Science, vol. 47, no. 8, pp. 4091-4095, 2019.
[36]   J. T. Camp, Y. Jing, J. Zhuang, J. F. Kolb, S. J. Beebe, J. Song, R. P. Joshi, S. Xiao, and K. H. Schoenbach, “Cell death induced by subnanosecond pulsed electric fields at elevated temperatures,” IEEE Transactions on plasma science, vol. 40, no. 10, pp. 2334-2347, 2012.
[37]   G. Saulis, and R. Saulė, “Size of the pores created by an electric pulse: Microsecond vs millisecond pulses,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1818, no. 12, pp. 3032-3039, 2012.