طراحی سیستم کنترل مقاوم غیرمتمرکز مبتنی بر نقطه تعادل نش با بهره‌گیری از تنظیم کننده های مربعی خطی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 عضو هیات علمی ، گروه مهندسی برق، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی واحد اهواز، ایران

2 مهندسی کنترل، دانشکده مندسی برق، دانشگاه خواجه نصیرالدین توصی، تهران، ایران

3 عضو هیات علمی/ دانشگاه خواجه نصیرالدین طوسی

چکیده

در کنترل‌کننده‌های غیرمتمرکز، بازی غیرهمکارانه عاملهای کنترلی هوشمند می‌تواند به عملکرد نامناسب و در مواردی ناپایداری سیستمهای تحت کنترل بیانجامد. قراردادن متغیرهای حالت سیستم در نقطه تعادل نش حلقه بسته بازی عاملها، راهکار مقاوم تئوری بازی‌های دیفرانسیلی برای حل این مشکل به شمار می آید. چالش پیش‌رو در پیاده‌سازی این راهکار، پیچیدگی حل معادلات ریکاتی کوپل شده حاکم بر بازی و محاسبه نقطه تعادل نش حلقه بسته آن می‌باشد. در این مقاله به منظور ساده سازی فرآیند محاسبه نقطه تعادل نش حلقه بسته بازی و طراحی سیستم کنترلی غیرمتمرکز مبتنی بر آن، از یک سیستم کنترل بهینه متمرکز معادل استفاده می شود. در اینخصوص یک مساله تنظیم مربعی خطی متمرکز با عنوان مساله ناظر تعریف و شرایط لازم و کافی برای آنکه حل بهینه آن معادل نقطه تعادل نش حلقه بسته عامل ها گردد مطرح می‌شود. در صورت عدم وجود شرایط، با استفاده از معیار حداقل مربعات خطا، نزدیکترین حل نش بازی ارائه می‌گردد. درنهایت صحت نتایج حاصله بر روی یک سیستم قدرت دو ناحیه ای بدون بازگرمایی مورد بررسی قرار می‌گیرد

کلیدواژه‌ها


عنوان مقاله [English]

Robust Decentralized Control System Design based on Nash Equilibrium Point using Linear Quadratic Regulators

نویسندگان [English]

  • S. Najafi Birgani 1
  • B. Moaveni 2
  • A. Khaki-Sedigh 3
1 Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Systems and Control, Faculty of Electrical Engineering, K. N. Toosi University of Technology (KNTU), P.O.Box: 16315-1355, Tehran, Iran
3 Department of Systems and Control, Faculty of Electrical Engineering, K. N. Toosi University of Technology (KNTU), P.O.Box: 16315-1355, Tehran, Iran
چکیده [English]

Non-cooperative intelligent control agents (ICAs) with dedicated cost functions, can lead the system to poor performance and in some cases, closed-loop instability. A robust solution to this challenge is to place the ICAs at the feedback Nash equilibrium point (FNEP) of the differential game between them. This paper introduces the designation of a robust decentralized infinite horizon LQR control system based on the FNEP for a linear time-invariant system. For this purpose, two control strategies are defined. The first one is a centralized infinite horizon LQR (CIHLQR) problem (i.e. a supervisory problem), and the second one is a decentralized control problem (i.e. an infinite horizon linear-quadratic differential game). Then, while examining the optimal solution of each of the above strategies on the performance of the other, the necessary and sufficient conditions for the equivalence of the two problems are presented. In the absence of the conditions, by using the least-squares error criterion, an approximated CIHLQR controller is presented. It is shown that the theorems could be extended from a two-agent control system to a multi-agent system. Finally, the results are evaluated using the simulation results of a Two-Area non-reheat power system.

کلیدواژه‌ها [English]

  • Non-cooperative Differential Game
  • Nash-based Decentralized Control System
  • Infinite Horizon Linear Quadratic Regulator
  • Feedback Nash Equilibrium Point
  • Two-Area Power System
[1]           B. D. Anderson and J. B. Moore, Optimal control: linear quadratic methods. Courier Corporation, 2007.
[2]           F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons, 2012.
[3]           A. Sinha, Linear systems: optimal and robust control. CRC press, 2007.
[4]           A. Owczarkowski, D. Horla, and J. Zietkiewicz, "Introduction of Feedback Linearization to Robust LQR and LQI Control – Analysis of Results from an Unmanned Bicycle Robot with Reaction Wheel," Asian Journal of Control, vol. 21, no. 2, pp. 1028-1040, 2019, doi: https://doi.org/10.1002/asjc.1773.
[5]           A. G. Pillai and E. Rita Samuel, "PSO based LQR-PID output feedback for load frequency control of reduced power system model using balanced truncation," International Transactions on Electrical Energy Systems, vol. 31, no. 9, p. e13012, 2021, doi: https://doi.org/10.1002/2050-7038.13012.
[6]           A. Sir Elkhatem and S. Naci Engin, "Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control," Alexandria Engineering Journal, vol. 61, no. 8, pp. 6275-6292, 2022/08/01/ 2022, doi: https://doi.org/10.1016/j.aej.2021.11.057.
[7]           E. Joelianto, D. Christian, and A. Samsi, "Swarm control of an unmanned quadrotor model with LQR weighting matrix optimization using genetic algorithm," Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 11, no. 1, pp. 1-10, 2020.
[8]           N. Cramer, S. S.-M. Swei, K. C. Cheung, and M. Teodorescu, "Extended discrete-time transfer matrix approach to modeling and decentralized control of lattice-based structures," Structural Control and Health Monitoring, vol. 23, no. 10, pp. 1256-1272, 2016, doi: https://doi.org/10.1002/stc.1837.
[9]           J. Narayan and S. K. Dwivedy, "Robust LQR-Based Neural-Fuzzy Tracking Control for a Lower Limb Exoskeleton System with Parametric Uncertainties and External Disturbances," Applied Bionics and Biomechanics, vol. 2021, p. 5573041, 2021/06/12 2021, doi: 10.1155/2021/5573041.
[10]         H. Calgan and M. Demirtas, "A robust LQR-FOPIλDµ controller design for output voltage regulation of stand-alone self-excited induction generator," Electric Power Systems Research, vol. 196, p. 107175, 2021/07/01/ 2021, doi: https://doi.org/10.1016/j.epsr.2021.107175.
[11]         D. Masti, M. Zanon, and A. Bemporad, "Tuning LQR controllers: A sensitivity-based approach," IEEE Control Systems Letters, vol. 6, pp. 932-937, 2021.
[12]         H. H. Bilgic, M. A. Sen, A. Yapici, H. Yavuz, and M. Kalyoncu, "Meta-heuristic tuning of the LQR weighting matrices using various objective functions on an experimental flexible arm under the effects of disturbance," Arabian Journal for Science and Engineering, vol. 46, no. 8, pp. 7323-7336, 2021.
[13]         X. Huang and P. Li, "An Auto-tuning LQR based on Correlation Analysis," IFAC-PapersOnLine, vol. 53, no. 2, pp. 7148-7153, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.ifacol.2020.12.525.
[14]         E. E. Vlahakis, L. D. Dritsas, and G. D. Halikias, "Distributed LQR-based Suboptimal Control for Coupled Linear Systems⁎⁎This work was supported by a City, University of London scholarship held by Eleftherios Vlahakis," IFAC-PapersOnLine, vol. 52, no. 20, pp. 109-114, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.ifacol.2019.12.139.
[15]         W. Wang, F. Zhang, and C. Han, "Distributed linear–quadratic regulator control for discrete-time multi-agent systems," IET Control Theory & Applications, vol. 11, no. 14, pp. 2279-2287, 2017, doi: https://doi.org/10.1049/iet-cta.2016.1641.
[16]         M. Wang, H. Xu, S. Yang, L. Yang, R. Duan, and X. Zhou, "Non-cooperative differential game based energy consumption control for dynamic demand response in smart grid," China Communications, vol. 16, no. 8, pp. 107-114, 2019, doi: 10.23919/JCC.2019.08.010.
[17]         H. Xu and R. Lin, "Resource allocation for network security risk assessment: A non-cooperative differential game based approach," China Communications, vol. 13, no. 4, pp. 131-135, 2016, doi: 10.1109/CC.2016.7464130.
[18]         م. جوادی, س. میرحسینی مقدم و م. مرزبند, "مدیریت بهینه انرژی ریزشبکه‌ها در بازار خرده‌فروشی بر پایه روش تئوری بازی غیر همکارانه با در نظر گرفتن عدم قطعیت," مجله مهندسی برق دانشگاه تبریز, vol. 46, no. 1, pp. 63-74, 2016. [Online]. Available: https://tjee.tabrizu.ac.ir/article_4673_8577edbed16eabf47d026ba28b6c5e5b.pdf.
[19]         م. جوادی, س. س. قاضی‌میرسعید و م. مرزبند, "استراتژی قیمت‌گذاری استاتیکی برپایه مفهوم انرژی انتقالی در سیستم‌های چند-ریزشبکه‌ای خانگی با استفاده از روش تئوری بازی غیرهمکارانه," مجله مهندسی برق دانشگاه تبریز, vol. 48, no. 2, pp. 557-571, 2018. [Online]. Available: https://tjee.tabrizu.ac.ir/article_7784_02918d4438b4a3a5b8eb0fc2fd1c3322.pdf.
[20]         J. Nash, "Non-cooperative games," Annals of mathematics, pp. 286-295, 1951.
[21]         J. F. Nash Jr, "The bargaining problem," Econometrica: Journal of the econometric society, pp. 155-162, 1950.
[22]         R. Isaacs, Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization. Courier Corporation, 1999.
[23]         J. Engwerda, "Min-Max Robust Control in LQ-Differential Games," Dynamic Games and Applications, 2022/01/18 2022, doi: 10.1007/s13235-021-00421-z.
[24]         J. Engwerda, "A Numerical Algorithm to Find All Feedback Nash Equilibria in Scalar Affine Quadratic Differential Games," IEEE Transactions on Automatic Control, vol. 60, no. 11, pp. 3101-3106, 2015, doi: 10.1109/TAC.2015.2411914.
[25]         D. Vrabie and F. Lewis, "Adaptive dynamic programming for online solution of a zero-sum differential game," Journal of Control Theory and Applications, vol. 9, no. 3, pp. 353-360, 2011.
[26]         Y. Lv and X. Ren, "Approximate Nash solutions for multiplayer mixed-zero-sum game with reinforcement learning," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 12, pp. 2739-2750, 2018.
[27]         S. Krilašević and S. Grammatico, "Learning generalized Nash equilibria in multi-agent dynamical systems via extremum seeking control," Automatica, vol. 133, p. 109846, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.automatica.2021.109846.
[28]         J. Engwerda, LQ dynamic optimization and differential games. John Wiley & Sons, 2005.
[29]         T. Li and Z. Gajic, "Lyapunov Iterations for Solving Coupled Algebraic Riccati Equations of Nash Differential Games and Algebraic Riccati Equations of Zero-Sum Games," in New Trends in Dynamic Games and Applications: Springer, 1995, pp. 333-351.
[30]         R. A. Horn and C. R. Johnson, "Topics in matrix analysis," Cambridge University Presss, Cambridge, pp. 242-295, 1991.
[31]         G. Freiling, G. Jank, and H. Abou-Kandil, "On global existence of solutions to coupled matrix Riccati equations in closed-loop Nash games," Automatic Control, IEEE Transactions on, vol. 41, no. 2, pp. 264-269, 1996, doi: 10.1109/9.481532.
[32]         S. Najafi Birgani, B. Moaveni, and A. Khaki‐Sedigh, "Infinite horizon linear quadratic tracking problem: A discounted cost function approach," Optimal Control Applications and Methods, vol. 39, no. 4, pp. 1549-1572, 2018.