هماهنگی نگهداری واحدهای تولید انرژی در سیستم‌های چندحاملی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی نوشیروانی بابل

2 گروه پژوهشی پست‌های فشارقوی- دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی نوشیروانی بابل

3 دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی اصفهان

چکیده

 در بهره‌برداری میان‌مدت از شبکه‌های چندحاملی در شرایط خصوصی‌سازی، ایجاد هماهنگی نگهداری در میان واحدهای تولید از اهمیت به‌سزایی برخوردار بوده به‌نحوی‌که چالش اساسی در این امر، وجود منابع تولید هم‌زمان و رفتار مالکان منابع تولید می‌باشد. منابع تولید هم‌زمان به سبب تولید چندحامل انرژی، نقشی کلیدی در برنامه تولید شبکه‌های چندحاملی را ایفا نموده و تحت‌تأثیر رفتار مالکان و سیاست بهره‌برداری آنان می‌باشند. در این مقاله، مدلی به‌منظور ایجاد سازوکار هماهنگی تعمیر و نگهداری منابع تولید در سیستم‌های چندحاملی انرژی در شرایط رقابتی و با در نظرگرفتن اهداف بازیگران اصلی شامل مالکان و بهره‌بردار سیستم ارائه می‌شود. مدل پیشنهادی یک مدل چندهدفه شامل حداقل‌سازی هزینه‌های میان‌مدت از دید مالکان و تأمین قابلیت اطمینان شبکه در بازه میان‌مدت از دید بهره‌بردار کل سیستم می‌باشد. برای حل مسئله چندهدفه فوق از روش ε-constraint استفاده‌شده و جبهه پارتو مسئله حاصل گردید. برای یافتن یک پاسخ یکتا برای مسئله از روش فازی بهره گرفته شد. مدل پیشنهادی برروی یک سیستم چندحاملی بومی (منطقه ویژه عسلویه) مورد آزمون قرار می‌گیرد. نتایج شبیه‌سازی نشان می‌دهند که پنجره زمانی خروج واحدهای تولید، چالش برنامه‌ریزی برای خروج واحدهای تولید هم‌زمان در این شبکه‌ها را مرتفع می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Generation Units Maintenance Coordination in Multi-Carrier Energy System

نویسندگان [English]

  • N. Hosseini 1
  • A.R. Sheikholeslami 1
  • T. Barforoushi 2
  • M. A. Latify 3
1 Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran,
2 HV substations research group, Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
3 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran,
چکیده [English]

In the mid-term operational management of multi-carrier energy systems (MCES) in a deregulated system, coordination among owners of production units is very important. Scheduling the CCHP resources and also the behavior of the owners of production resources are the main coordinating challenges. The cogeneration resources play a key role in energy generation networks and are affected by the behavior of the owners and their operation policies. In this paper, a model is presented that coordinates resources  in MCES in competitive conditions. It takes the objectives of key players, including system operator into account. The proposed model is a multi-objective model and aims to minimize mid-term costs for the resource owners and ensures the reliability of the network over the medium term from the perspective of the operator of the whole system. To solve the multi-objective problem, the Epsilon-constraint method has been used and the Pareto front has been solved. The Fuzzy method was used to find a unique answer to the problem. The proposed model is tested on a local MCES (Special Economic Zone in Assaluyeh), and the simulation results indicate that coordinated outage window, eliminates the scheduling challenge for the output of concurrent production units in these networks.

کلیدواژه‌ها [English]

  • Multi-Carrier Energy System (MCES)
  • CCHP & CHP
  • maintenance coordination
  • multi-objective optimization
[1]      A. Shabanpour-Haghighi, A.R. Seifi, “Effects of district heating networks on optimal energy flow of multi-carrier systems,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 379–387, 2016.
[2]       C. Unsihuay, J.M. Lima, A.Z. de Souza, “Modeling the integrated natural gas and electricity optimal power flow,” Power engineering society general meeting, 2007 IEEE, pp. 1-7, 2007.
[3]       M. R. Haghifam and M. Manbachi, "Reliability and availability modelling of combined heat and power (CHP) systems," International Journal of Electrical Power & Energy Systems, vol. 33, pp. 385-393, 2011.
[4]      P. Mancarella, "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, vol. 65, pp.0360-5442, 2014.
[5]      X. Zhao, F. Liu, F. Bo,"Reliability analysis of hybrid multi-carrier energy systems based on entropy-based Markov model," Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 230, PP. 561-569, 2016.
[6]       M. Salimi, H. Ghasemi and M. Adelpour, "Optimal planning of energy hubs in interconnected energy systems: a case study for natural gas and electricity," IET Generation, Transmission & Distribution, vol. 9, pp. 695-707, 2015.
[7]      R. Evins, K. Orehounig and J. Carmeliet "New formulations of the ‘energy hub’model to address operational constraints," Energy, vol. 73, pp. 387-398, 2014.
[8]      A. Shahmohammadi, M. Moradi-Dalvand, H. Ghasemi, "Optimal design of multicarrier energy systems considering reliability constraints," IEEE Transactions on Power Delivery, vol. 30, pp. 878-886, 2015.
[9]      B. Rezaie, MA. Rosen “District heating and cooling: review of technology and potential enhancements,” Appl Energy; vol. 93, pp. 2–10, 2012.
[10]      H. Barot and K. Bhattacharya, "Security coordinated maintenance scheduling in deregulation based on genco contribution to unserved energy," IEEE Transactions on Power Systems, vol. 23, pp. 1871-1882, 2008.
[11]       T. Krause, G. Andersson and K. Frohlich, "Multiple-energy carriers: modeling of production, delivery, and consumption," Proceedings of the IEEE, vol. 99, pp. 15-27, 2011.
[12]       داود روشن‌دوست؛ رحمت‌الله هوشمند؛ اسکندر قلی‌پور؛ مصطفی نصرت‌آبادی، «طراحی یک سیستم مدیریت انرژی برای یک ریزشبکه صنعتی مبتنی بر منابع CHP از طریق برنامه‌ریزی تولید و پاسخ تقاضا»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 3، صفحه 197-209، 1395.
[13]      L. M. Ramirez-Elizondo and G. C. Paap, "Unit commitment in multiple energy carrier systems," In Proc. North American Power Symposium (NAPS), Starkville, MS, USA, pp. 1-6, 2009.
[14]      M. Geidl and G. Andersson, "Optimal power dispatch and conversion in systems with multiple energy carriers, "In proc. 15TH Power systems computation conference, Liège, Belgium, 2005.
[15]      M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, and E. Hajipour, "Multi-agent genetic algorithm: an online probabilistic view on economic dispatch of energy hubs constrained by wind availability," IEEE Trans. Sustain. Energy, vol. 5, pp. 699-708, 2014.
[16]       M. Almassalkhi and I.A. Hiskens, “Cascade mitigation in energy hub networks,” Proceedings of the 2011 50th IEEE conference on design and control and European control conference (CDC-ECC), Orlando, FL, 12–15 December 2011, pp. 2181–2188. New York.
[17]      A. Helseth and A.T. Holen, “Reliability modeling of gas and electric power distribution systems; similarities and differences,” Proceedings of the 9th international conference on probabilistic methods applied to power systems KTH, Stockholm, 11–15 June 2006, pp.1–5. New York.
[18]      G. Koeppel and G. Andersson, “Reliability modeling of multi-carrier energy systems,” Energy; vol. 34, no. 3, pp. 235–244, 2009.
[19]      M. Geidl and G. Andersson, "Optimal power flow of multiple energy carriers," IEEE Transactions on Power Systems, vol. 22, pp. 145-155, 2007.
[20]       S Amiri, M Honarvar, “Providing an Integrated Model for Planning and Scheduling Energy Hubs and Preventive Maintenance,” Energy, vol. 163, pp. 1093-1114, 2018.
[21]      N. Prajapat, A. Tiwari, “Preventive Maintenance Scheduling Optimization: A Review of Applications for Power Plants”, Springer, Cham, Advances in Through-life Engineering Services, pp 397-415, 2017.
[22]      W. GU, W. Zhi and B. Rui, "Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review," International Journal of Electrical Power & Energy Systems, vol. 54, pp. 26-37, 2014.
[23]      A. Froger, M. Gendreau, J. Mendoza and E. Pinson, "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, vol. 251, pp. 695-706, 2016.
[24]      A. J. Conejo, R. García-Bertrand and M. Díaz-Salazar, "Generation maintenance scheduling in restructured power systems," IEEE Transactions on Power Systems, vol. 20, pp. 984-992, 2005.
[25]      A. Badri and A. N. Niazi, "Preventive generation maintenance scheduling considering system reliability and energy purchase in restructured power systems," International Journal of Basic and Applied Scientific Research, vol. 12, pp. 12773-12786, 2012.
[26]      M. El-Sharkh and A. El-Keib, "Maintenance scheduling of generation and transmission systems using fuzzy evolutionary programming," IEEE Transactions on Power Systems, vol. 18, pp. 862-866, 2003.
[27]      J. Yellen, T. Al-Khamis, S. Vemuri and L. Lemonidis, “A decomposition approach to unit maintenance scheduling,” IEEE Trans. Power Syst., vol. 7, no. 2, pp. 726–733, May 1992.
[28]      M. A. Latify, H. Seifi and H. R. Mashhadi, "An integrated model for generation maintenance coordination in a restructured power system involving gas network constraints and uncertainties," International Journal of Electrical Power & Energy Systems, vol. 46, pp. 425-440, 2013.
[29]      M. Marwali and S. Shahidehpour, "Integrated generation and transmission maintenance scheduling with network constraints," IEEE Transactions on Power Systems, vol. 13, pp. 1063-1068, 1998.
[30]      E. Da Silva, M. TH. Schilling and MC. Rafael, "Generation maintenance scheduling considering transmission constraints," IEEE Transactions on Power Systems, vol. 15, pp. 838-843, 2000.
[31]      L. Garver, “Adjusting maintenance schedules to levelize risk,” IEEE Trans. Power App. Syst., vol. PAS-91, no. 5, pp. 2057–2063, 1972.
[32]      O. Sadeghian, A. Oshnoei, “Multi-objective optimisation of generation maintenance scheduling in restructured power systems based on global criterion method”, IET Smart Grid, pp. 2515-2947, 2019.
[33]       عباس مارینی، محمدامین لطیفی، محمدصادق قاضی‌زاده، «زمان‌بندی توأم تعمیرات واحدهای تولیدی و منابع ذخیره‌ساز انرژی»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 4، صفحه 285-297، 1395.
[34]      M. Manbachi, A.H. Parsaeifard, and M.R. Haghifam, "A new solution for maintenance scheduling using maintenance market simulation based on game theory” IEEE Electrical Power & Energy Conference 2009.
[35]      U. E. Ekpenyong, J. Zhang, X. Xia "An improved robust model for generator maintenance scheduling". Electric Power System Restructurer; vol. 92, pp.29–36, 2012.
[36]      S. D. Manshadi and M. E. Khodayar, "Risk-Averse Generation Maintenance Scheduling with Microgrid Aggregators," in IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6470-6479, 2018.
[37]       K. Bhattacharya, M.H Bollen, J.E Daalder, "Operation of restructured power systems," Springer Science & Business Media, 2012.
[38]      M. Shahidehpour, M. Alomoush,"Restructured electrical power systems: Operation: Trading, and volatility," CRC Press, 2001.
[39]      R. Lusby, L. Muller, B. Petersen, “A solution approach based on Benders decomposition for the preventive maintenance scheduling problem of a stochastic large-scale energy system”. J Sched, pp. 1–24, 2013.
[40]       J. L. Sweeney, "California Electricity Crisis" Hoover Press, 2013.
[41]      P. M. Pardalos, A. Migdalas and L. Pitsoulis., Pareto optimality, game theory and equilibria vol. 17: Springer Science & Business Media, 2008.
[42]       A. Rabiee, A. Soroudi, B. Mohammadi-ivatloo, M. Parniani, "Corrective voltage control scheme considering demand response and stochastic wind power", IEEE Transaction Power System vol. 29, pp. 2965-2973, 2014.
[43]      R. Hashemi, “A Developed Offline Model for Optimal Operation of Combined Heating and Cooling and Power Systems” IEEE Transactions On Energy Conversion, vol. 24, pp. 222-229, 2009.
[44]       The GAMS Software Website (http://www.gams.com). 2013
[45]       G. Mavrotas and K. Florios, "AUGMECON2: A novel version of the ε-constraint method for finding the exact Pareto set in Multi-Objective Integer Programming problems,”2016.
[46]      سید نقی حسینی، عبدالرضا شیخ الاسلامی، تقی بارفروشی، محمدامین لطیفی، «زمان‌بندی تعمیرات واحدهای تولید انرژی در سیستم‌های چندحاملی انرژی»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 3، صفحه 1094-1083، 1397.