یک روش مداری مبتنی بر اصل تسهیم یکسان جملات تداخلی به‌منظور تخصیص هزینه‌های ثابت انتقال - منطق نظریه بازی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه تبریز

چکیده

این مقاله، روشی جدید برای تخصیص هزینه‌های ثابت انتقال بین مشترکین شبکه در یک بازار تسهیلات اشتراکی برق ارائه می­کند. پروسه تخصیص مبتنی‌بر قوانین مداری بوده و از ماتریس امپدانس تغییر‌یافته بهره می­گیرد. روند تخصیص هزینه‌ها در دو گام مستقل برای مجموعه ژنراتورها و بارها اجرا می­شود. ابتدا به‌منظور تعیین سهم مشارکت ژنراتور­ها در استفاده از تجهیزات انتقال، ژنراتورها به‌صورت جریان‌های تزریقی معادل و بارها به‌صورت امپدانس‌های معادل مدل می­شوند. سپس جهت تعیین سهم مشارکت بارها در استفاده از تجهیزات انتقال، بارها و ژنراتورها به‌ترتیب به‌صورت جریان‌های تزریقی و امپدانس‌های معادل مدل می­شوند. به‌منظور تفکیک جملات تداخلی بین مولفه­های تشکیل‌دهنده، از اصل تسهیم یکسان استفاده شده و منطقی‌بودن اصل مذکور توسط دو روش حل منتخب نظریه بازی یعنی مقادیر شاپلی و اومان - شاپلی به اثبات رسیده است. همچنین با استفاده از روش پیشنهادی، سهم مشارکت ژنراتورها در بارها نیز قابل‌تعیین بوده و لذا مفهومی جدید تحت عنوان مبادلات دو جانبه معادل مبتنی‌بر نظریه مداری معرفی شده است. درنهایت به‌منظور اعتبارسنجی روش پیشنهادی تخصیص هزینه، نتایج عددی گزارش و بحث شده است. ‌‌‌‌‌

کلیدواژه‌ها


عنوان مقاله [English]

A Circuit Theory Based Method for Transmission Fixed Cost Allocation Based on the Equal-Sharing of Mutual Terms- A Game-Theoretic Rationale

نویسندگان [English]

  • S. Pouyafar
  • M. Tarafdar Hagh
  • K. Zare
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

This paper proposes a new method to allocate the transmission fixed costs among the network participants in a pool based electricity market. The allocation process relies on the circuit laws, utilizes the modified impedance matrix, and is performed in two individual steps for generators and loads. First: to identify the generators contributions into the usage of the transmission facilities, the generators are modelled as current injections and the loads as equivalent impedances. Second: to identify the load's contributions into the usage of the transmission facilities, the loads are modelled as current injections and the generators as impedances. To split the mutual terms between the involved components, the equal sharing principle is used and proved to be rational by the Shapley and Aumann-Shapley values as two preferred game-theoretic solutions. The proposed approach is also applied to determine the generators contributions into the loads, thus, a new concept, named, circuit-theory based equivalent bilateral exchange, is introduced. Numerical results are reported and discussed to validate the proposed cost allocation method.

کلیدواژه‌ها [English]

  • Transmission cost allocation
  • circuit-theory based methods
  • sharing of mutual-terms
  • game theory
[1]      N. H. Radzi, R. C. Bansal and Z. Y. Dong, “New Australian NEM transmission use of system charging methodologies for integrating renewable generation to existing grid,” Renewable Energy, vol. 76, pp. 72-81, 2015.
[2]      N. H. Radzi, R. C. Bansal, Z. Y. Dong, M. Y. Hassan and K. P. Wong, “An efficient distribution factors enhanced transmission pricing method for Australian NEM transmission charging scheme,” Renewable Energy, vol. 53, pp. 319-328, 2013.
[3]      Z. Yang, H. Zhong, Q. Xia, C. Kang, T. Chen and Y. Li, “A structural transmission cost allocation scheme based on capacity usage identification,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2876 - 2884, July 2016.
[4]      S. Nojeng, M. Y. Hassan, D. M. Said, M. P. Abdullah and F. Hussin, “Improving the MW-Mile method using the power factor-based approach for pricing the transmission services,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2042-2048, 2014.
[5]      J. Bialek, “Tracing the flow of electricity,” IEE Proc. Gener. Transm. Distrib., vol. 143, no. 4, pp. 313-320, 1996.
[6]      J. W. Bialek and P. A. Kattuman, “Proportional sharing assumption in tracing methodology,” IEE Proc. Gener. Transm. Distrib., vol. 151, no. 4, pp. 526-532, 2004.
[7]      C. Achayuthakan, C. J. Dent, J. W. Bialek and W. Ongsakul, “Electricity tracing in systems with and without circulating flows: physical insights and mathematical proofs,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 1078-1087, 2010.
[8]      M. Ghayeni and R. Ghazi, “Transmission network cost allocation with nodal pricing approach based on Ramsey pricing concept,” IET Proc. Gener. Transm. Distrib., vol. 5, no. 3, pp. 384–392, 2011.
[9]      H. A. Gil, F. D. Galiana and E. L. d. Silva, “Nodal price control: a mechanism for transmission network cost allocation,” IEEE Trans. Power Syst., vol. 21, no. 1, pp. 3-10, 2006.
[10]      A. M. L. d. Silva, J. G. d. C. Costa and L. H. L. Lima, “A new methodology for cost allocation of transmission systems in interconnected energy markets,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 740-748, 2013.
[11]      M. S. S. Rao and S. A. Soman, “Marginal pricing of transmission services using min-max fairness policy,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 573-584, March 2015.
[12]      F. D. Galiana, A. J. Conejo and H. A. Gil, “Transmission network cost allocation based on equivalent bilateral exchanges,” IEEE Trans. Power Syst., vol. 18, no. 4, pp. 1425-1431, 2003.
[13]      E. Telles, D. A. Lima, A. Street and J. Contreras, “Min–max long run marginal cost to allocate transmission tariffs for transmission users,” Electr. Power Syst. Res., vol. 101, pp. 25– 35, 2013.
[14]      Y. Xiao, X. Wang, X. Wang and C. Du, “Transmission cost allocation by power tracing based equivalent bilateral exchanges,” CSEE Journal of Power and Energy Systems, vol. 2, no. 2, pp. 1-10, 2016.
[15]      M. S. S. Rao, S. A. Soman, P. Chitkara, R. K. Gajbhiye, N. Hemachandra and B. L. Menezes, “Min-max fair power flow tracing for transmission system usage cost allocation: a Large system perspective,” IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1457-1468, 2010.
[16]      H. Shareef, S. A. Khalid, M. W. Mustafa and A. Khairuddin, “Preference comparison of AI power tracing techniques for deregulated power markets,” Advances in Artificial Intelligence, vol. 2012, pp. 1-9, 2012.
[17]      M. H. Sulaiman, M. W. Mustafa, H. Shareef and S. N. A. Khalid, “An application of artificial bee colony algorithm with least squares support vector machine for real and reactive power tracing in deregulated power system,” Electr. Power Energy Syst., vol. 37, pp. 67-77, 2012.
[18]      E. Bjorndal, G. C. Stamtsis and I. Erlich, “Finding core solutions for power system fixed cost allocation,” IEE Proc. Gener. Transm. Distrib., vol. 152, no. 2, pp. 173-179, 2005.
[19]      R. Bhakar, V. S. Sriram, N. P. Padhy and H. O. Gupta, “Probabilistic game approaches for network cost allocation,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 51-58, 2010.
[20]      Y. P. Molina, O. R. Saavedra and H. Amarís, “Transmission network cost allocation based on circuit theory and the aumann-shapley method,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4568-4577, 2013.
[21]      معصومه جوادی، موسی مرزبند، سیدمازیار میرحسینی مقدم، «مدیریت بهینه ریزشبکه ها به همراه استراتژی قیمت گذاری بر پایه روش تئوری بازی با در نظر گرفتن ائتلاف منابع تولید»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 4، صفحه 95-108، 1395.
[22]      فاطمه آذرینژادیان، موسی مرزبند، «مدیریت شیفت تقاضای مقید در برنامه ریزی نواحی انرژی با در نظر گرفتن تشکیل ائتلاف بهینه و تخصیص سود در سیستمهای همسایه ای»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 355-370، 1396.
[23]      M. Roustaei, M. K. Sheikh-El-Eslami and H. Seifi, “Transmission cost allocation based on the users’ benefits,” Electr. Power Energy Syst., vol. 61, pp. 547–552, 2014.
[24]      V. N. Bharatwaj, A. R. Abhyankar and P. R. Bijwe, “Flexible mix and match approach for network fixed cost allocation,” Electr. Power Energy Syst., vol. 42, pp. 8–15, 2012.
[25]      J.-H. Teng, “Power flow and loss allocation for deregulated transmission systems,” Electr. Power Energy Syst., vol. 27, pp. 327–333, 2005.
[26]      A. J. Conejo, J. Contreras, D. A. Lima and A. Padilha-Feltrin, “Zbus transmission network cost allocation,” IEEE Trans. Power Syst., vol. 22, no. 1, pp. 342-349, 2007.
[27]      S. N. Khalid, H. Shareef, M. W. Mustafa, A. Khairuddin and A. M. Oo, “Evaluation of real power and loss contributions for deregulated environment,” Electr. Power Energy Syst., vol. 38, pp. 63–71, 2012.
[28]      J. Nikoukar, M. R. Haghifam and A. Parastar, “Transmission cost allocation based on the modified Z-bus,” Electr. Power Energy Syst., vol 42, pp. 31–37, 2012.
[29]      S. M. Abdelkader, D. J. Morrow and A. J. Conejo, “Network usage determination using a transformer analogy,” IET Proc. Gener. Transm. Distrib., vol. 8, no. 1, pp. 81–90, 2014.
[30]      Y. P. Molina, O. R. Saavedra and C. Portugal, “Allocation of transmission network cost using modified Zbus matrix,” Electr. Power Energy Syst., vol. 63, pp. 323–330, 2014.
[31]      M. De and S. K. Goswami, “Reactive support allocation using improved Y-bus matrix method,” IET Proc. Gener. Transm. Distrib., vol. 5, no. 4, pp. 448–460, 2011.
[32]      Y. A. Alturki and K. L. Lo, “Real and reactive power loss allocation in pool-based electricity markets,” Electr. Power Energy Syst., vol. 32, pp. 262–270, 2010.
[33]      X. Tan and T. T. Lie, “Application of the Shapley Value on transmission cost allocation in the competitive power market environment,” IEE Proc. Gener. Transm. Distrib., vol. 149, no. 1, pp. 15-20, 2002.
[34]      G. C. Stamtsis and I. Erlich, “Use of cooperative game theory in power system fixed-cost allocation,” IEE Proc. Gener. Transm. Distrib., vol. 151, no. 3, pp. 401-406, 2004.
[35]      A. J. Wood, B. F. Wollenberg and G. B. Sheble, Power Generation, Operation, and Control, Third edition, Wiley Publishing, 2013.
[36]      M. A. Pai, Computer techniques in powersystem analysis, McGraw-Hill, New Delhi, 2006, pp. 228-231.
[37]      R. Zimmermann and D. Gan, MATPOWER: a MATLAB power system simulation package, User’s Manual Version 4.1, 2011.