[1] V. C. Chen, Inverse Synthetic Aperture Radar Imaging Principles, Algorithms and Applications: The Institution of Engineering and Technology, 2014.
[2] X. He, N. Tong, and X. Hu, “Dynamic ISAR imaging of maneuvering targets based on sparse matrix recovery,” Signal Processing, vol. 134, pp. 123-129, 2017.
[3] L. Zhang, M. Xing, C.-W. Qiu, J. Li, and Z. Bao, “Achieving higher resolution ISAR imaging with limited pulses via compressed sampling,” IEEE Geoscience and Remote Sensing Letters, vol. 6, pp. 567-57, 2009.
[4] E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms,” IEEE Access, vol. 7, pp. 1300-1322, 2019.
[5] S. Budhiraja, “A survey of compressive sensing based greedy pursuit reconstruction algorithms International,” Journal of Image, Graphics and Signal Processing (IJIGSP), vol. 7, 2015.
[6] J. L. Walker, “Range-Doppler imaging of rotating objects,” IEEE Transactions on Aerospace and Electronic Systems, pp. 23-52, 1980.
[7] S. Tomei, A. Bacci, E. Giusti, M. Martorella, and F. Berizzi, “Compressive sensing-based inverse synthetic radar imaging imaging from incomplete data,” IET Radar, Sonar & Navigation, vol. 10, pp. 386-397, 2016.
[8] M.-S. Kang, S.-J. Lee, S.-H. Lee, and K.-T. Kim, “ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing,” IEEE Transactions on Image Processing, vol. 26, pp. 5043-5056, 2017.
[9] F. Keinert, D. Lazzaro, and S. Morigi, “A robust group-sparse representation variational method with applications to face recognition,” IEEE Transactions on Image Processing, 2019.
[10] M. Babakmehr, M. G. Simões, M. B. Wakin, and F. Harirchi, “Compressive sensing-based topology identification for smart grids,” IEEE Transactions on Industrial Informatics, vol. 12, pp. 532-543, 2016.
[11] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: Compressed sensing for analog signals,” IEEE Transactions on Signal Processing, vol. 57, pp. 993-1009, 2009.
[12] Y. Zou, X. Gao, and X. Li, “Block sparse bayesian learning based strip map SAR imaging method,” in Antennas and Propagation (EuCAP), 10th European Conference on, pp. 1-4, 2016,
[13] J. Wen, H. Chen, and Z. Zhou, “An optimal condition for the block orthogonal matching pursuit algorithm,” IEEE Access, vol. 6, pp. 38179-38185, 2018.
[14] H. Li and J. Wen, “A new analysis for support recovery with block orthogonal matching pursuit,” IEEE Signal Processing Letters, vol. 26, pp. 247-251, 2019.
[15] S. Suwanwimolkul, L. Zhang, D. Gong, Z. Zhang, C. Chen, D. C. Ranasinghe, et al., “An adaptive markov random field for structured compressive sensing,” IEEE Transactions on Image Processing, vol. 28, pp. 1556-1570, 2019.
[16] L. Wang, L. Zhao, G. Bi, C. Wan, and L. Yang, “Enhanced ISAR imaging by exploiting the continuity of the target scene,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, pp. 5736-5750, 2014.
[17] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on Signal Processing, vol. 56, pp. 2346-2356, 2008.
[18] D. P. Wipf and B. D. Rao, “Sparse bayesian learning for basis selection,” IEEE Transactions on Signal Processing, vol. 52, pp. 2153-2164, 2004.
[19] Z. Zhang and B. D. Rao, “Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation,” IEEE Transactions on Signal Processing, vol. 61, pp. 2009-2015, 2013.
[20] Z. Zhang and B. D. Rao, “Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, pp. 912-926, 2011.
[21] Z. Zhang, T.-P. Jung, S. Makeig, Z. Pi, and B. D. Rao, “Spatiotemporal sparse bayesian learning with applications to compressed sensing of multichannel physiological signals,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, pp. 1186-1197, 2014.
[22] Q. Wan, H. Duan, J. Fang, H. Li, and Z. Xing, “Robust bayesian compressed sensing with outliers,” Elsevier-Signal Processing, vol. 140, pp. 104-109, 2017.
[23] H. Duan, L. Yang, J. Fang, and H. Li, “Fast inverse-free sparse bayesian learning via relaxed evidence lower bound maximization,” IEEE Signal Processing Letters, vol. 24, pp. 774-778, 2017.
[24] R. Entezari and A. Rashidi, “Continuity pattern-based sparse bayesian learning for inverse synthetic aperture radar imaging,” Journal of Applied Remote Sensing, vol. 12, 2018.
[25] منیره کوشش و غلامرضا اکبری زاده، « الگوریتم حذف Speckle با قابلیت حفظ لبه برای تصاویر سنجش از دور رادار روزنه ترکیبی با استفاده از تبدیل چند مقیاسهی Curvelet و آستانهگذاری وفقی», مجله مهندسی برق دانشگاه تبریز, جلد 45، شماره 4، صفحات 161-153، زمستان 1394.
[26] C. Wang, L. Xu, D. A. Clausi, and A. Wong, “A Bayesian joint decorrelation and despeckling of SAR imagery,” IEEE Geoscience and Remote Sensing Letters, 2019.
[27] ایرج سرداری و جلیل سیفعلی هرسینی, «حذف نویز لکه از تصاویر SAR بر پایه ترکیب روش آستانهگذاری با تخمینزنهای بیزین MMSE/MAP در حوزه تبدیل کانتورلت», مجله مهندسی برق دانشگاه تبریز, جلد 49، شماره 1، صفحات 253-241، بهار 1398.
[28] T. Leportier and M.-C. Park, “Filter for speckle noise reduction based on compressive sensing,” Optical Engineering, vol. 55, 2016.
[29] T. Scarnati and A. Gelb, “Variance based joint sparsity reconstruction of synthetic aperture radar data for speckle reduction,” in Algorithms for Synthetic Aperture Radar Imagery XXV, 2018.
[30] R. Vehmas, J. Jylhä, M. Väilä, J. Vihonen, and A. Visa, “Data-driven motion compensation techniques for noncooperative ISAR imaging,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, pp. 295-314, 2018.
[31] محمدصادق فاضل و مجتبی بهشتی, «خودتمرکزدهی برای جبران خطای حرکت در رادار روزنه ترکیبی پهپاد با تفکیکپذیری زیاد برد», مجله مهندسی برق دانشگاه تبریز, جلد 48، شماره 1، صفحات 218-207، بهار 1397.
[32] رحیم انتظاری و علیجبار رشیدی, «استخراج تصویر از اهداف با حرکت غیریکنواخت در رادار دهانه ترکیبی معکوس», مجله مهندسی برق دانشگاه تبریز, جلد 47، شماره 2، صفحات 400-391، تابستان 1396.
[33] G. Xu, L. Yang, L. Zhao, and G. Bi, “ISAR maneuvering targets imaging and motion estimation from parametric sparse bayesian learning,” in Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, pp. 3254-3257, 2016.
[34] M. E. Tipping, “Sparse bayesian learning and the relevance vector machine,” Journal of machine learning research, vol. 1, pp. 211-244, 2001.
[35] D. P. Wipf and B. D. Rao, “An empirical bayesian strategy for solving the simultaneous sparse approximation problem,” IEEE Transactions on Signal Processing, vol. 55, pp. 3704-3716, 2007.
[36] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational approximation for bayesian inference,” IEEE Signal Processing Magazine, vol. 25, pp. 131-146, 2008.
[37] W. Qiu, E. Giusti, A. Bacci, M. Martorella, F. Berizzi, H. Zhao, et al., “Compressive sensing–based algorithm for passive bistatic ISAR with DVB-T signals,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, pp. 2166-2180, 2015.
[38] J. Lv, L. Huang, Y. Shi, and X. Fu, “Inverse synthetic aperture radar imaging via modified smoothed L0 norm,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1235-1238, 2014.