رویکردی برای تحلیل آسیب‌پذیری شبکه‌های اجتماعی مبتنی بر عملکرد با استفاده از ضریب خوشه‌بندی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشکده فنی و مهندسی

2 گروه مهندسی کامپیوتر - واحد آبادان - دانشگاه آزاد اسلامی

چکیده

توانمندی در واکنش به رویدادهای غیرمنتظره همواره برای شبکه‌های دنیای واقعی مطلوب است. به‌منظور بهبود توانمندی هر نوع سیستم شبکه، تجزیه و تحلیل آسیب‌پذیری برای اختلالات خارجی از قبیل نقص تصادفی یا حملات دفاعی که به عناصر شبکه وارد می‌شوند حائز اهمیت است. در این مقاله، یک مسئله نوظهور در ارزیابی توانمندی شبکه‌های پیچیده را بررسی می‌کنیم: آسیب‌پذیری خوشه‌بندی شبکه‌های مبتنی بر عملکرد در برابر فقدان عناصر شبکه. هدف اصلی شناسایی رئوسی است که فقدان آن‌ها به‌واسطه تضعیف خوشه‌بندی، به‌طور قابل‌توجهی به شبکه آسیب می‌رساند که از طریق میانگین ضریب خوشه‌بندی مورد ارزیابی قرار می‌گیرد. این مسئله به این دلیل حائز اهمیت است که هر تغییر قابل‌ملاحظه‌ای  ناشی از نقص عناصر که منجر به تغییر خوشه‌بندی می‌شود می‌تواند عملکرد شبکه، مانند توانایی انتشار اطلاعات در یک شبکه اجتماعی را کاهش دهد. ما این تحلیل آسیب‌پذیری را به‌عنوان یک مسئله بهینه‌سازی تنظیم می‌کنیم و کامل بودن و عدم یکنواختی آن را نشان می‌دهیم. درنهایت، آزمایش‌های جامعی را در شبکه‌های اجتماعی ساختگی و واقعی که توسط مدل‌های شناخته‌شده تولیدشده‌اند، انجام می‌دهیم. نتایج تجربی در مقایسه با استراتژی‌های مختلف در شبکه‌های ترکیبی و واقعی نشان می‌دهد که میانگین ضریب خوشه‌بندی در تحلیل نقص گره‌های شبکه بسیار کارآمد است . همچنین نتایج به‌دست‌آمده تائید می‌کند که تکنیک حذف گره‌های پراهمیت به ویژه از نظر مقدار مرکزیت نزدیکی، در تجزیه و تحلیل آسیب‌پذیری خوشه‌بندی بسیار مؤثر است. 

کلیدواژه‌ها


عنوان مقاله [English]

An Approach to Analyze the Vulnerability of Function-Based Social Networks Using Clustering Coefficient

نویسندگان [English]

  • M. Mirzaie 1
  • M. Nooraei Abadeh 2
1 Faculty of Electrical and Computer Engineering, Golpayegan University of Technology,Golpayegan, Iran
2 Department of Computer Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
چکیده [English]

Robustness in response to unexpected events is always ideal for real-world networks. In order to improve the robustness of any network system, it is important to analyze the vulnerability to external interference such as accidental fault or attacks that are introduced into the network elements. In this paper, a novel study investigates the robustness of complex network using the clustering coefficient of networks against loss of elements. In particular, we can identify vertexes that can damage the network due to the weakening of its clustering, which is evaluated by means of the average of clustering coefficient. This is important because any tangible change that leads to a clustering is caused by defects that can reduce network functionality, such as the ability to spread information on a social network. We present this risk analysis as an optimization method and demonstrate the completeness and uncertainty of our approach to identify main vertices for clustering. Finally, we perform comprehensive experiments in the combined social networks that are generated by different models. The experimental results show that the average clustering coefficient is very efficient in analyzing the fault of network node failure. Also, the results confirm that the technique of removing the important nodes, especially in terms of the closeness centrality, is very effective in the analysis of clustering vulnerability.

کلیدواژه‌ها [English]

  • Social Network
  • Clustering Coefficient
  • Vulnerability
  • Centrality Measure
 [1]  توکلی، سمیه. و فاطمی، افسانه. »تشکیل تیم دوهدفه در شبکه‌های اجتماعی«. مجله مهندسی برق دانشگاه تبریز،(2) 47: 423-433، 1397.
[2]      Fei, L., H. Mo, and Y. Deng, A new method to identify influential nodes based on combining of existing centrality measures. Modern Physics Letters B, 2017. 31(26): p. 1750243.
[3]      Lü, L., Chen, D., Ren, X. L., Zhang, Q. M., Zhang, Y. C., & Zhou, T., Vital nodes identification in complex networks. Physics Reports, 2016. 650: p. 1-63.
[4]      Chen, X., System vulnerability assessment and critical nodes identification. Expert Systems with Applications, 2016. 65: p. 212-220.
[5]      Watts, D.J. and S.H. Strogatz, Collective dynamics of ‘small-world’networks. nature, 1998. 393(6684): p. 440.
[6]      Aggarwal, C.C., Social Network Data Analytics. 2011: Springer Publishing Company, Incorporated. 516.
[7]      Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., & Jia, W., Influence analysis in social networks: A survey. Journal of Network and Computer Applications, 2018.
[8]      Social media active users by network. https://www.statista.com, 2018.
[9]      Kuhnle, A., Nguyen, N. P., Dinh, T. N., & Thai, M. T., Vulnerability of clustering under node failure in complex networks. Social Network Analysis and Mining, 2017. 7(1): p. 8.
[10]      Dinh, T. N., Xuan, Y., Thai, M. T., Pardalos, P. M., & Znati, T., On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Transactions on Networking, 2012. 20(2): p. 609-619.
[11]      Crucitti, P., Latora, V., Marchiori, M., & Rapisarda, A., Error and attack tolerance of complex networks. Physica A: Statistical mechanics and its applications, 2004. 340(1-3): p. 388-394.
[12]      Peixoto, T.P. and S. Bornholdt, Evolution of robust network topologies: Emergence of central backbones. Physical review letters, 2012. 109(11): p. 118703.
[13]      Callaway, D. S., Newman, M. E., Strogatz, S. H., & Watts, D. J., Network robustness and fragility: Percolation on random graphs. Physical review letters, 2000. 85(25): p. 5468.
[14]      Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K., Attack vulnerability of complex networks. Physical review E, 2002. 65(5): p. 056109.
[15]      Grubesic, T. H., Matisziw, T. C., Murray, A. T., & Snediker, D., Comparative approaches for assessing network vulnerability. International Regional Science Review, 2008. 31(1): p. 88-112.
[16]      Veremyev, A., O.A. Prokopyev, and E.L. Pasiliao, Critical nodes for distance‐based connectivity and related problems in graphs. Networks, 2015. 66(3): p. 170-195.
[17]      Gomes, T., Tapolcai, J., Esposito, C., Hutchison, D., Kuipers, F., Rak, J., De Sousa, A., Iossifides, A., Travanca, R., André, J. and Jorge, L., A survey of strategies for communication networks to protect against large-scale natural disasters. in Resilient Networks Design and Modeling (RNDM), 2016 8th International Workshop. 2016. IEEE.
[18]      Nguyen, N. P., Alim, M. A., Shen, Y., & Thai, M. T., Assessing network vulnerability in a community structure point of view. in Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference .2013. IEEE.
[19]      Alim, M. A., Nguyen, N. P., Dinh, T. N., & Thai, M. T.. Structural vulnerability analysis of overlapping communities in complex networks. in Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 01. 2014. IEEE Computer Society.
[20]      Ertem, Z., A. Veremyev, and S. Butenko, Detecting large cohesive subgroups with high clustering coefficients in social networks. Social Networks, 2016. 46: p. 1-10.
[21]      Freeman, L.C., Centrality in social networks conceptual clarification. Social networks, 1978. 1(3): p. 215-239.
[22]      Liu, J., Xiong, Q., Shi, W., Shi, X., & Wang, K., Evaluating the importance of nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 2016. 452: p. 209-219.
[23]       https://snap.stanford.edu/data/com-Youtube.html.
[24]       https://snap.stanford.edu/data/email-Eu-core.html.
[25]      F. Le Gall, "Powers of tensors and fast matrix multiplication." pp. 296-303.