Design of a Proposed Millimeter-Wave Metamaterial Structure to Increase the End-Fire Antenna Gain

Authors

Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

In this article, an end-fire microstrip dipole antenna, with high gain and capability of operating in millimeter-wave frequency band (57-64 GHz) is designed. The high gain of the antenna, with concept of negative permeability is achieved by the proposed metamaterial slabs embedded in horizontal plane of the dipole antenna. Each slab is loaded by a novel unit-cell. The result of the full-wave simulation presents the fact that the proposed design, would cause a better gain of 6.2 dBi in comparison with conventional dipole antenna without using metamaterial structures. In this structure, 28 metamaterial slabs from proposed unit-cells are used. These unit-cells are capable of creating two magnetic resonances that can play an important role to improve the gain in a wide frequency band. How to achieve this gain enhancement, depends on the number and decoration of metamaterial slabs around the antenna. These proposed metamaterial slabs are placed on top of the horizontal plane of the antenna, and also on the bottom of the antenna plane. This would cause the main lobe to stay still to the desired direction.

Keywords


[1] A. Dadgarpour, M. S. Sorkherizi, T. A. Denidni and A. A. Kishk “Passive beam switching and dual-beam radiation slot antenna loaded with ENZ medium and excited through ridge gap waveguide at millimeter-waves,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 1, pp. 92-102, Jan. 2017.
[2] J. Du, E. Onaran, D. Chizhik, S. Venkatesan and R. A. Valenzuela, “Gbps user rates using mm wave relayed backhaul with high gain antennas,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1363-1372, Jun. 2017.
[3] C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. Hoboken, NJ, USA: Wiley, 2016.
[4] M. Moosazadeh, S. Kharkovsky, J. T. Case and B. Samali, “Improved radiation characteristics of small antipodal Vivaldi antenna for microwave and millimeter wave imaging applications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1961-1964, 2017.
[5] K. Ding, C. Gao, T. Yu, D. Qu and B. Zhang, “Gain-improved broadband circularly polarized antenna array with parasitic patches,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1468-1471, Dec. 2016.
[6] M. Asaadi and A. Sebak, “High-gain low-profile circularly polarized slotted SIW cavity antenna for MMW applications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 752-755, Aug. 2016.
[7] Y. J. Cheng, W. Hong and K. Wu, “Millimeter-wave multibeam antenna based on eight-port hybrid,” IEEE Microwave and Wireless Component Letters, vol. 19, no. 4, pp. 212-214, Apr. 2009.
[8] A. B. Guntupalli, T. Djerafi and K. Wu, “Two-dimensional scanning antenna array driven by integrated waveguide phase shifter,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 3, pp. 1117-1123, Mar. 2014.
[9] W. Choi, K. Park, Y. Kim, K. Kim and Y. Kwon, “A V-band switched beam-forming antenna module using absorptive switch integrated with 4×4 butler matrix in 0.13-m CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4052-4059, Dec. 2010.
[10] W. Hong, A. Goudelev, K. h. Baek, V. Arkhipenkov and J. Lee, “24-element antenna-in-package for stationary 60-GHz communication scenarios,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 738-741, 2011.
[11] J. D. Baena, J. Bonache, F. Martín, R. M. Sillero, F. Falcone, T. Lopetegi, M. A.G. Laso, J. García-García, I. Gil, M. F. Portillo and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53 no. 4, pp. 1451-1461, Apr. 2005.
[12] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075-2084, Nov. 1999.
[13] W. Cao, B. Zhang, A. Liu, T. Yu, D. Gua and Y. Wei, “Gain enhancement for broadband periodic endfire antenna by using split-ring resonator structures,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 7, pp. 3513–3516, Jul. 2012.
[14] A. Dadgarpour, M. Sharifi Sorkherizi and A. A. Kishk “Wideband, low-loss magneto-electric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 12, pp. 5094-5101, Dec. 2016.
[15]  A. Dadgarpour, B. Zarghooni, B. S. Virdee and T. A. Denidni, “Beam-deflection using gradient refractive-index media for 60-GHz end-fire antenna,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3768-3774, Aug. 2015.
[16] A. Dadgarpour, B. Zarghooni, B. S. Virdee and T. A. Denidni, “High-gain end-fire bow-tie antenna artificial dielectric layers,” IET Microwave, Antennas and Propagation, vol. 9, no. 12, pp. 1254-1259, Sep. 2015.
[17] فرهاد خسروی افوسی، محمدنقی آذرمنش و جواد نوری‌نیا، «به‌کارگیری ساختارهای EBG به منظور افزایش پهنای باند و دایرکتیویته آنتن میکرواستریپ»، مجله مهندسی برق دانشگاه تبریز، شماره 2، جلد 43، صفحه 8-1، ایران، 1392.
[18] M. Sun, Z. N. Chen and X. Qing, “Gain Enhancement of 60-GHz Antipodal Tapered Slot Antenna Using Zero-Index Metamaterial,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1741-1746, Apr. 2013.
[19] K. B. Ng, C. H. Chan, H. Zhang and G. Zeng, “Bandwidth enhancement of planar slot antenna using complementary source technique for millimeter-wave applications,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4452-4458, Sep. 2014.
[20] A. Dadgarpour, B. Zarghooni, B. S. Virdee and T. A. Denidni, “Single end-fire antenna for dual-beam and broad beamwidth operation at 60 GHz by artificially modifying the permittivity of the antenna substrate,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 9, pp. 4068-4073, Sep. 2016.
[21] A. B. Guntupalli and K. Wu, “60-GHz circularly polarized antenna array made in low-cost fabrication process,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 864-867, 2014.
[22] S. Mohammadi-Asl, J. Nourinia, Ch. Ghobadi, M. Majidzadeh, E. Mostafapour and A. Haghshenas, “Wideband High-Gain modified dual-band and dual-circularly polarized array antenna,” Wireless Personal Communications, pp. 1-14, Jun. 2017.
[23] N. Malekpour, M. A. Honarvar, A. Dadgarpour, B. S. Virdee and T. A. Denidni, “Compact UWB mimo antenna with band-notched characteristic,” Microwave and Optical Technology Letters, vol. 59, no. 5, pp. 1037-1041, May 2017.
[24] G. Zheng, A. A. Kishk and A. B. Yakovlev, “Simplified feed for modified printed Yagi antenna,” Electronics Letters, vol. 40, no. 8, pp. 464-466, Apr. 2004.
[25] وحید نجفی و محمد بمانی، «طراحی و ساخت آنتن یاگی‌یودا ریزنواری با قابلیت کار در دو باند فرکانسی 915/0 و 440/2 گیگاهرتز»، مجله مهندسی برق دانشگاه تبریز، شماره 2، جلد 47، صفحه 739-735، ایران، 1396.
[26] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, New York: Wiley, 2004.