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Abstract 

In many applications, especially military applications, the inertial navigation system (INS) needs to achieve a high level 

of accuracy in a short time. For alignment, recursive estimator filters and, in non-linear cases, the Extended Kalman Filter 

(EKF) is often used. The dynamics of a real, continuous system and the output of the sensors are available discretely. 

Therefore, a hybrid filter has been used. In addition, a robust filter is used to increase the reliability of system operation. 

In this paper, a Hybrid Extended Kalman Filter (HEKF) is presented and then upgraded to the Hybrid Robust Extended 

Kalman Filter (HREKF). By running the algorithm on the data of a real system, it was observed that the speed of 

convergence increased especially in the yaw direction. By running the algorithm on the data of a real system, it was 

observed that the speed of convergence has increased especially in the yaw direction. Finally, using the impulsive system 

approach, a new stability analysis of the proposed algorithms is presented, which guarantees the boundedness of the error 

estimation, which is unique. 
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1. Introduction 

In many applications, such as Unmanned Aerial Vehicle 

(UAV) navigation [1, 2], mobile devices [3], Autonomous 

Underwater Vehicle (AUV) navigation  [4], and human 

body motion tracking [5], etc., especially military 

applications, the inertial navigation system needs to achieve 

a high level of accuracy in a short time [6].  

Alignment means finding the connection between the 

physical coordinate system, and the navigation device [7, 8] 

which is very important in the navigation process. 

Converting the sensor readings into the reference frame's 

height, velocity, and starting position requires an accurate 

orientation calculation. Poor initial levels cause poor 

navigation. Navigation systems that only work with low-

cost Micro Electro Mechanical System (MEMS) sensors 

quickly diverge [9]. The system is based on the output of the 

gyroscope sensor, which is updated by gravitational and 

magnetic sensors.  

Kalman Filter (KF) and Extended Kalman Filter (EKF), 

as the most well-known and widely adopted approaches, 

were applied in diverse areas, especially in the orientation 

estimation [9-12].  In recent years, estimation algorithms 

based on navigators integrated for various land, sea, and air 

systems have been widely developed. One of the most 

common algorithms for estimation is the Kalman filter. In 

solving navigation problems, the Kalman filter is used in 

linear models with Gaussian noise, and the EKF is used in 

linear models with non-Gaussian noise. [13].Moreover, the 

Robust Extended Kalman Filter (REKF) was considered for 

nonlinear systems by researchers [14, 15]. 

For example, two covariance-tuning methods to form a 

Robust Kalman Filter (RKF) algorithm for attitude (i.e., roll 

and pitch) estimation using the measurements of only an 

Inertial Measurement Unit (IMU) have been proposed by 

Candan et al. [16]. Both of the proposed methods include an 

adaptive mechanism for modifying the measurement noise 

covariance to provide reliable estimates of the two axes of 

orientation. For nonlinear systems, additional approaches 

have been utilized, such as observer design [17].  

Regarding a low-cost Inertial Measurement Unit (IMU), 

an orientation estimation strategy for a non-accelerated 

platform was presented. Kalman filter is the most used 

technique to solve the problem of initial alignment [18]. 

However, it can only deal with initial alignment under small 

misalignment angles. Under large initial azimuth 

misalignment angle conditions, the model of SINS is 

nonlinear, and it could be processed by nonlinear filtering. 

Large misalignment angles and uncertain noise are two 

main problems in initial alignment in different application 

environments [19]. The nonlinear model of SINS and 

nonlinear methods are developed to solve the alignment 

problem. The widely used nonlinear filtering method in 

engineering is EKF [20]. 

An EKF's performance may be significantly harmed by 

linearization faults that are inherent in the specification. In 

practice, the EKF has performance limitations. One of these 

limitations is considering process noise and Gaussian 

measurement. This assumption is not always true. 

Therefore, this problem can seriously affect the performance 
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of the algorithm or even lead to a deviation in the estimation. 

[21] 

On the other hand, SINS initial alignment with unknown 

noise, the conventional nonlinear filtering approach 

discussed above will result in a larger estimate error if the 

environment noise is not Gaussian white noise. In recent 

years, the combination of magnetometer data, and inertial 

sensors was widely used in estimating the situation [22, 23].  

The data from the gyroscope is integrated to obtain the 

orientation, while the data from the accelerometer and 

magnetometer are used to estimate the gyroscope biases 

online. However, the estimation accuracy of the two 

methods depends on the accelerometer and magnetometer. 

In the proposed method, the quaternion associated with the 

bias of the accelerometer and magnetometer is modelled as 

the state vector to estimate the bias of the gyroscope for 

online calibration [22].   

For practical systems, the hybrid model is more 

compatible with considering implementation restrictions. In 

this paper, a hybrid algorithm is presented because previous 

algorithms were unable to provide an accurate estimate for 

the yaw in practical implementations of SINS. A hybrid 

system is a dynamic system with continuous and discrete 

dynamic behavior. A hybrid system has the benefit of 

encompassing a larger class of systems within its structure, 

allowing for more flexibility in modeling dynamic 

phenomena [8]. As far as the authors have investigated, no 

research work has been done regarding HREKF and 

algorithm design and stability proof and simulation with real 

data, and this is the important innovation of this article.   
The difference between this article and other research is; 

Presenting the new HREKF algorithm, proving the stability 

and convergence of that algorithm, and practical system 

implementation.   HREKF could achieve the results at a 

significantly lower expense than HEKF, and obtain a high 

accuracy even when the statistical property of noise is 

uncertain, or the outliers of measurement occasionally 

occur. As can be observed from the findings, the HREKF 

outperforms the other filters, particularly in the YAW 

direction, since it is resistant to process and system noise as 

well as unknown inputs and different kinds of uncertainties. 

The results show that the proposed algorithm performs more 

efficiently than other observers to ensure the yaw direction 

and eliminate perturbation in addition to the less structural 

complexity. 

Considering that the evaluation and adaptation of the 

HREKF method to the specific requirements and 

characteristics of the target system have been important for 

ensuring optimal results, the Lipchitz condition has played 

a crucial role in checking nonlinear systems when applying 

this method in other systems. This algorithm has received 

favorable responses for a real critical operating system, 

indicating its effectiveness. Furthermore, the 

aforementioned mathematical condition has proven valid 

for a wide range of real systems. Consequently, this method 

has demonstrated versatility and can be employed in similar 

applications without specific systematic limitations. 

The article is organized as follows. After explaining the 

problem, HEKF is presented in algorithm 1 and HREKF in 

algorithm 2, and the differences between the two algorithms 

are shown. After that, the stability of HREKF has been 

analyzed, and in the next step, with real data, the efficiency 

of HREKF has been shown in this particular field, and as a 

result, it clearly shows that the HREKF algorithm works 

better than HEKF. 
 

2. Problem Formulation and Designed Algorithms  

Motivated by the idea of hybrid systems, two kinds of 

HEKF are given. The dynamic of the system is continuous, 

where the measurement is discrete. The considered 

nonlinear hybrid system in this paper is represented by 

 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) + 𝜔(𝑡)                 𝜔(𝑡) ∼ (0, 𝑄)             (1) 

𝑦𝑘 = ℎ𝑘(𝑥𝑘) +  𝜈𝑘                          𝜈𝑘 ∼ (0, 𝑅𝑘)   

 

where  𝑥 ∈ ℝ𝑚 , 𝑦𝑘 ∈ ℝ𝑛  𝑢 ∈ ℝℓ  denote the state, 

measurement vectors, and control input respectively. The 

nonlinear function 𝑓(⋅)  is assumed to be continuously 

differentiable and ℎ𝑘  is the measurement . 𝜔(𝑡) and 𝜈𝑘  are 

uncorrelated zero mean white noise processes with 

covariance matrices 𝑄  and 𝑅𝑘  respectively.  Since dual 

estimation is done in this article, the process noise 

covariance is divided into two general parts. In cases where 

we have parameter estimation, the covariance matrix can be 

recursively estimated with Robbins-Monroe coefficients in 

each step and increase the modeling accuracy. 𝑄̅ is the 

variance of process noise.  Qωk
is the part of the covariance 

matrix of the process noise that estimates with Robbins-

Monro coefficients, and Q̅ is a constant part. 

 

𝑄 = [
𝑄̅ 0
0  𝑄𝜔𝑘

] 

The gyroscope output is used to predict the direction 

during propagation, which is known as the previous estimate. 

Kalman filter-based algorithms consist of two crucial 

processes: time update and measurement update. During 

measurement updates, the magnetometer and accelerometer 

outputs are utilized to correct the previous estimate, 

resulting in a posterior estimate.  

The paper continues by presenting an experimental 

implementation of a real SINS, where the HREKF 

algorithm is used to estimate the situation using angular 

velocity measurements from a gyroscope and a 

measurement vector. The algorithm aims to achieve 

convergence in estimating the state matrix and bias 

estimation of the gyroscope to actual values. To rectify the 

inaccuracies in YAW angle calculation, the magnetometer 

is utilized since it has higher precision. Combining the 

accelerometer with the magnetometer eliminates the output 

data drift of the gyroscope. By integrating the output of the 

gyroscope and combining it with information from the 

accelerometer and magnetometer sensors, more precise 

position angles can be obtained. In the HEKF framework, 

which is designed for nonlinear systems, the systems 

operate continuously and the measurements are discrete. In 

the continuous part, the measurements (Gyro Measurements) 

are discrete but they are considered constant in time 

intervals. For this reason, mixed modelling was done. 

Therefore,  the system consists of two parts, continuous and 

discrete. In this paper, HEKF and HREKF are presented as 

Algorithm 1 and Algorithm 2. 
Algorithm 1 is an improved algorithm presented by Dan 

Simon [24]. Kalman filters are highly sensitive to system 
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modelling. For this reason, the covariance of the process 

noise, which indicates the accuracy of the modelling, 

becomes more accurate at each step. Parameter estimation 

is performed at each step . 

In Step 3, 𝑄𝜔𝑘
 is estimated based on the Robbins-Monro 

stochastic approximation method [24]. Due to differences 

between environment noises and the variety of properties of 

noise, the covariance matrix is estimated continuously in 

this method which yields a more accurate model of the real 

system.  
In the above algorithm, 𝑀𝑘  is the mean state estimate 

matrix of the previous step which can be considered as a 

constant in all steps. 
HEKF makes the accurate knowledge dynamic model of 

the system under consideration one of its basic tenets. Since 

the filter type may not be resistant to this uncertainty, further 

techniques were created with the same objective in mind, 

and a discrete-time state estimator was created. The 

approach taken in the robust HEKF is not to neglect the 

higher-order terms of Taylor series expansions but rather to 

assume them to be functions of the state estimation error and 

the exogenous inputs that have bounded H∞. This approach 

leads to a minimax estimation problem that can be treated 

using standard H∞ methods.  
Since the equations of the system are continuous and the 

measurements are discrete, then the filters must be hybrid. 
So we have two time parameters, T is sample time and dt is 

the step size and time interval used to solve the continuous 

part. Algorithm 1 is presented as follows. 

 

 
 

Algorithm 1. Hybrid Extended Kalman Filter 

  
Step 1: Initialization 

Initialize arbitrary value for 𝑥̂0
+ and 𝑃0

+ as follows 

𝑥̂0
+ = 𝐸[𝑥0] 

𝑃0
+ = 𝐸[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑇] 

Step 2: Time Update (Prediction Cycle) 

Predict 𝑥̂ by using the following one step ahead state prediction formula: 

𝑥̂𝑘
− = 𝑥̂𝑘−1

+ + 𝑑𝑡(𝑓(𝑥̂𝑘−1
+ , 𝑢𝑘−1, ω𝑘−1, 𝑘 − 1)) 

 Predict 𝑃 by using the following one step ahead error covariance matrix prediction: 

Recursive formula: 𝑃𝑘
− = 𝑃𝑘−1

+ + 𝑑𝑡(𝐹𝑘𝑃𝑘−1
+ + 𝑃𝑘−1

+ 𝐹𝑘
𝑇 + 𝐿Q𝑘𝐿

𝑇) 

Step 3: Measurement Update (Correction Cycle) 

Update covariance matrix 𝑄𝜔𝑘
 as follows (Robbins-Monroe stochastic approximation)  

Qωk
= (1 − α)𝑄𝜔𝑘−1

+ 𝛼𝑘𝑘(𝑦𝑘 − ℎ(𝑥̂))(𝑦𝑘 − ℎ(𝑥̂))
𝑇
𝑘𝑘

𝑇             0 ≤ 𝛼 ≤ 1     

𝑄𝑘=[
𝑄̅ 0
0 Qωk

] 

Obtain Kalman Gain as follows 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)−1 

Update state estimate as follows 

𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘(𝑦𝑘 − ℎ𝑘(𝑥̂𝑘
−, 0, 𝑡𝑘)) 

Update the error covariance matrix as follows 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑀𝑘𝑅𝑘𝑀𝑘
𝑇𝐾𝑘

𝑇 

where the Jacobean matrix of 𝑓(𝑥𝑘−1) and ℎ(𝑥𝑘) are obtained as  

𝐹𝑘 =
𝜕𝑓(𝑥)

𝜕𝑥
|
𝑥𝑘

        

𝐻𝑘 =
𝜕ℎ(𝑥)

𝜕𝑥
|
𝑥𝑘

 

𝑀𝑘 =
𝜕ℎ

𝜕𝑣
|𝑥𝑘

 

𝐿𝑘 =
𝜕𝑓(𝑥)

𝜕𝜔
|𝑥𝑘

 

where 𝐼 Represent the identity matrix. 

 

The HEKF is obtained by first-order linearization of the 

nonlinear model, and the approximation error between the 

linear model and the original nonlinear system may be 

significant. In this case, there are many deviations of the 

estimated state from the actual state. Linearization error 

reduction by modelling these errors in uncertainty makes the 

system equations more accurate. To increase the reliability 

of the system and guarantee of boundedness of the 

estimation error, a novel method is proposed to design the 

HREKF 

The main purpose of HREKF design is to guarantee the 

norm of the transfer function among the external 

disturbances (modeling errors and system noises), and the 

estimation error to be less than a prescribed attenuation level 

𝛾  which satisfies 
‖𝑒𝑘‖2

‖𝜔𝑘‖2+‖∆𝑘‖2+‖𝑣𝑘‖2 ≤ 𝛾2  where 𝑒𝑘  is the 

estimation error (𝑒𝑘 = 𝑥𝑘 − 𝑥̂𝑘), 𝜔𝑘  and 𝑣𝑘  are the noise 
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vectors and 𝛥𝑘 = 𝑓(𝑥, 𝑢, 𝑡) − 𝑓(𝑥̂, 𝑢, 𝑡) − 𝐹𝑘𝑒𝑘  is the 

model error caused by unknown exogenous inputs or by 

linearization error. Tuning of attenuation level implies that 

the ability of the HREKF to minimize the energy of the 

estimation error is limited by the maximum eigenvalue 

of 𝑃𝑘
− . For a fixed value of 𝛾 the bound of the estimation 

error ‖𝑒𝑘‖
2  is enlarged by the presence of a linearization 

error or unknown exogenous inputs.  The tuning parameter 

𝛾 is nonzero and is set to maintain 𝛴𝑘|𝑘−1  as a positive 

definite matrix. The structure of HREKF is similar to HEKF 

when 𝛾 = ∞. 

Additionally, a significant difference between the 

projected state and the actual state will raise the linearization 

error. The filter will not converge if this tendency is not 

reversed.  The result shows that a nonlinear robust filter is 

more stable than HEKF and can effectively improve the 

accuracy of initial alignment, and the robustness of the 

algorithm. We will derive the HREKF, which considers 

systems with continuous time dynamics. This is the most 

common situation encountered in practice. In this 

experiment, we have a continuous time with discrete time. 

Algorithm 2 gives a design procedure for HREKF As 

follows.      
 

 
 Algorithm 2. Hybrid Robust Extended Kalman Filter 

 
Step 1: Initialization: 

Initialize arbitrary value for 𝑥̂0
+ and 𝑃0

+ as follows 

𝑥̂0
+ = 𝐸[𝑥0] 

𝑃0
+ = 𝐸[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑇] 

Step 2: Time Update (Prediction Cycle) 

Predict 𝑥̂ by using the following one step ahead state prediction formula 

𝑥̂𝑘
− = 𝑥̂𝑘−1

+ + 𝑑𝑡(𝑓(𝑥̂𝑘−1
+ , 𝑢𝑘−1, ω𝑘−1, 𝑘 − 1)) 

Update the covariance matrix by the following one step ahead error covariance matrix prediction: 

𝑃𝑘
− = 𝑃𝑘−1

+ + 𝑑𝑡(𝐹𝑘𝑃𝑘−1
+ + 𝑃𝑘−1

+ 𝐹𝑘
𝑇 + 𝐿Q𝑘𝐿

𝑇) 

One step ahead covariance matrix prediction: 

𝛴𝑘
− = ((𝑃𝑘

−)−1 − 𝛾−2𝐿𝑘
𝑇𝐿𝑘)

−1               

Step 3: Measurement Update (Correction Cycle) 

Define an auxiliary matrix as follows 

𝑃𝑦 = 𝐻𝑘Σ𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘 

Define the Kalman Gain estimate as follows 

𝐾𝑘 = Σ𝑘𝐻𝑘
𝑇𝑃𝑦

−1 

Estimate state as follows: 

𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘[𝑦𝑘 − ℎ(𝑥̂𝑘
−)] 

The final estimation of the error covariance matrix is given by: 

𝑃𝑘
+ = (Σ𝑘

−1 + 𝐻𝑘
𝑇𝑅𝑘

−1𝐻𝑘)
−1 

where the Jacobean matrix of 𝑓(𝑥𝑘) and ℎ(𝑥𝑘) are obtained as) Discrete continuous  ( .  

𝐹𝑘 =
𝜕𝑓(𝑥)

𝜕𝑥
|
𝑥𝑘

  

𝐻𝑘 =
𝜕ℎ(𝑥)

𝜕𝑥
|
𝑥𝑘

 

𝐿𝑘 =
𝜕𝑓(𝑥)

𝜕𝜔
|𝑥𝑘

 

 

where 𝐼 Represent the identity matrix. 
 

Remark 1: The tuning parameter 𝛾 in Step 3 is nonzero 

which is set to maintain 𝛴 a positive definite matrix. The 

norm of the transfer function of the estimation error is less 

than the attraction level 𝛾. Tuning of the attenuation level 

implies that the ability of the HREKF to minimize the 

energy of estimation error is limited by the maximum 

eigenvalue of  𝑃𝑘
+ . Moreover, a large deviation of the 

estimated state from the real one will increase the 

linearization error. If this tendency does not stop, the filter 

will not converge. 

 

3. Stability Analysis of HREKF 

This section presents the stability analysis of HREKF. 

Inspired by the stability analysis method for impulsive 

systems, certain conditions are provided. The aim of proving 

stability is to demonstrate that the error converges to zero 

and remains at zero.  

Define the error 𝑒 = 𝑥 − 𝑥̂ yields 

 

𝑒̇ = 𝑥̇ − 𝑥̇̂ = 𝑓(𝑥, 𝑢, 𝑡) −  𝑓(𝑥̂, 𝑢, 𝑡)                    (2)                                                      
 

As mentioned in the given algorithms, measurements are 

given at time 𝑡𝑘, and 𝑥̂ is modified as follows : 
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𝑥̂(𝑡𝑘
+) − 𝑥̂(𝑡𝑘

−) = 𝑘𝑘(𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘
−                          (3) 

 

So, the error value at time 𝑡𝑘 has a discrete change which 

is calculated from the following formula: 

 

{
𝑒(𝑡𝑘

+) = 𝑥(𝑡𝑘
+) − 𝑥̂(𝑡𝑘

+)

𝑒(𝑡𝑘
−) = 𝑥(𝑡𝑘

−) − 𝑥̂(𝑡𝑘
−)

                                           (4) 

 

where 𝑒 (𝑡𝑘
+) − 𝑒(𝑡𝑘

−) = 𝑥(𝑡𝑘
+) − 𝑥̂(𝑡𝑘

+) − 𝑥(𝑡𝑘
−) +

𝑥̂(𝑡𝑘
−). Here, 𝑡𝑘

− and 𝑡𝑘
+ indicate before and after 𝑡𝑘. Since 

the dynamics of the system are continuous, then: 

 

∆(𝑒𝑘(𝑡𝑘)) = 𝑒(𝑡𝑘
+) − 𝑒(𝑡𝑘

−) = 

𝐾𝑘 (𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘
−)))                                                          (5) 

 
We consider the noises as additive, so the error dynamics 

can be rewritten as the following stochastic impulsive 

system 

 

{
𝑒̇(𝑡) = 𝑓(𝑥, 𝑢, 𝑡)   − 𝑓(𝑥̂, 𝑢, 𝑡) 𝑡 ≠ 𝑡𝑘

𝑒(𝑡𝑘
+) = 𝑒(𝑡𝑘

−) − 𝐾𝑘 (𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘
−))) 𝑡 = 𝑡𝑘

    (6)   

 

Impulsive time sequence 𝒯 = {𝑡1, 𝑡2,⋯ }  is strictly 

increasing, and approaches to infinity. The function 

𝑓(𝑥, 𝑢, 𝑡) is assumed to be continuous with respect to 𝑡, 𝑥, 𝑢 

and uniformly locally Lipschitz with respect to  𝑥, 𝑢 

𝑓(∙ ,0,0) = 0. The function ℎ(∙) is discrete with respect to 

𝑥. Assume that given an initial condition, there is a unique 

stochastic process satisfying the system (6). 

Now, the following definitions and theorem give a 

sufficient condition to guarantee the stochastic system 

stability and boundedness of the error function. 

Definition 1: Given an impulsive time sequence T, the 

impulsive stochastic nonlinear system (6) is stochastic 

input-to-state stability (SISS), if, for an arbitrary 𝜖 ∈(0 1), 

there exist 𝛽 ∈ 𝐾𝐿, 𝛾 ∈ 𝐾∞such that for all 𝑥(𝑡0) ∈ 𝜒, 𝑢 ∈
𝑈. 𝑃{|𝑥(𝑡)| ≤ 𝛽(|𝑥(𝑡0)|, 𝑡 − 𝑡0) + 𝛾‖𝑢‖} ≥ 1 − 𝜖 ∀𝑡 ∈
𝑅𝑡+ 

Here, P denotes to probability measure. Given a set S of 

admissible impulsive time sequences, if the system is SISS 

for every T∈ S andβ, γ does not depend on the choice of 

T, then the system (6) is uniformly SISS over S. KL and 𝐾∞ 

denote functions of class KL and  𝐾∞, respectively. [25] 

Definition 2: Given an impulsive time sequence 𝑇, the 

impulsive stochastic nonlinear system (6) is stochastic 

global stability (SGS), if for an arbitrary 𝜖 ∈ (0 1) , is 

exist 𝛾1, 𝛾2 ∈ 𝐾∞ such that for all 𝑥(𝑡0) ∈ 𝜒, 𝑢 ∈ 𝑈. 
𝑃{|𝑥(𝑡)| ≤ 𝛾1(|𝑥(𝑡0)|, ) + 𝛾2‖𝑢‖} ≥ 1 − 𝜖  ∀𝑡 ∈

𝑅𝑡+ 

Given a set S of the admissible impulsive time sequences, 

if the system is stochastic global stability (SGS) for every 

𝑇 ∈ S and  𝛾1, 𝛾2 ∈ 𝐾∞do not depend on the choice of 𝑇, 

then the system (6) is uniformly SISS over S. [25] 

Theorem 1: Consider the stochastic nonlinear system (6) 

with Kalman gain 𝐾𝑘 = 𝑃𝛴𝑘𝐻𝑘
𝑇 . 

where 𝛴𝑘
− = ((𝑃𝑘

−)−1 − 𝛾−2𝐿𝑘
𝑇𝐿𝑘)

−1 

If there exists a positive matrix 𝑃 and positive scalars 

𝜖, 𝛿, 𝑑, and 𝑐 such the following conditions are met for all 

𝑎 >  0 

 

[

(𝑒−𝑑 − 1)𝑃 𝑃𝛴𝑘𝐻𝑘
𝑇𝑃𝑦

−1 𝐼

(𝛴𝑘𝐻𝑘
𝑇𝑃𝑦

−1)
𝑇
𝑃𝑇 𝜖−1𝐼 0

𝐼 0 𝜖𝜂−1𝐼

] > 0      (7 − 𝑎) 

∫
𝑑𝑠

𝜑(𝑠)

𝜓(𝑎)

𝑎
≤ 𝑇 − 𝛿                                               (7 − 𝑏) 

 

Then, system (6) is stochastically globally stable.  

Here, T is  the minimum time between two 

measurements, and 𝜑(𝑉(𝑒, 𝑡)) represents a function that is 

continuous and zero at zero. In the above relations 

𝑉(𝑒, 𝑡): 𝜒 × ℝ𝑡0
+ → ℝ+  is an optional SISS-Lyapunov 

function and scalar 𝜂  has been gained from Lipshitz 

condition (𝑦 − ℎ(𝑡𝑘
−1))

𝑇
(𝑦 − ℎ(𝑥(𝑡𝑘))) ≤ 𝜂𝑒(𝑡)𝑇𝑒(𝑡) . 

Matrices 𝑃𝑦, 𝛴𝑘, and 𝐻𝑘
𝑇  have been defined in Algorithm I, 

previously. 

In stochastic impulsive systems, as mentioned in the [26] 

(readers are referred to as Theorem 3.1 in Ref. [26]), we can 

always have an estimate of the function 𝐸‖𝑥(𝑡)‖𝑝 for the 

system. 

Proof: See Appendix A. 

 

Remark 2: In the above theorem, the Lyapunov 

function 𝑉(𝑒, 𝑡) =
1

2
𝑒𝑇𝑃𝑒  is considered which satisfies 

ℒ𝑉(𝑒, 𝑡) ≤ −𝜑(𝑉(𝑒, 𝑡)),  and it is assumed (𝑦 −

ℎ(𝑡𝑘
−1))

𝑇
(𝑦 − ℎ(𝑥(𝑡𝑘))) ≤ 𝜂𝑒𝑇𝑒. Since the continuous 

dynamic system is stable, so we can get 𝜑(𝑉(𝑒, 𝑡)) =

𝑐𝑉(𝑒, 𝑡) where 𝑐 > 0 and then 𝑇 > −
𝑑

𝑐
+ 𝛿 in which𝛿 >

0 . Also, (𝑦 − ℎ(𝑡𝑘
−1))

𝑇
(𝑦 − ℎ(𝑥(𝑡𝑘))) ≤ 𝜂𝑒𝑇𝑒  is 

concluded from the Lipchitz condition and 𝜂 is a positive 

scalar. 

 

4. Experimental Implementation 

This section presents the system equations for the 

experimental implementation of true SINS using the 

HREKF and HEKF methods. The attitude and bias are 

estimated using these methods, and the covariance of system 

error is continuously updated with reality. First, the 

equations of the system are presented, and then the results 

of HREKF and HEKF are presented to estimate attitude and 

bias. 

 

 4.1. System description 

The state vector includes quaternions and bias 

gyroscopes, which are estimated at each step using recursive 

algorithms, defined as follows. 

 

𝑥 = [𝑞0 𝑞1 𝑞2 𝑞3
𝜔𝑥𝑏 𝜔𝑦𝑏 𝜔𝑧𝑏]𝑇         (8) 

 

where 𝜔 = [𝜔𝑥 𝜔𝑦 𝜔𝑧] 𝑞 = [𝑞0 𝑞1
𝑞2 𝑞3] 

Now, we develop HEKF for the specified SINS. As 

mentioned previously, the HEKF is the nonlinear version of 

the conventional Kalman Filter, which linearizes an estimate 

of the present state and covariance using the Jacobians of the 

prediction and measurement functions. This allows a whole 

new set of prediction and measurement models to be used 

for estimation, as long as the prediction, and measurement 
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models 𝑓 and ℎ can be defined as differentiable functions 

of 𝑥.  

The next quaternion is found through numerical 

integration using 𝑞𝑘 = 𝑞𝑘−1 + 𝑑𝑡 ∗ 𝑞̇𝑘 where 

 

𝑞̇(𝑞, 𝜔) =
1

2
[

−𝑞1

𝑞0

−𝑞2

𝑞3

−𝑞3

−𝑞2
−𝑞3

𝑞2

𝑞0

−𝑞1

𝑞1

𝑞0

] [

𝜔𝑥 − 𝜔𝑥𝑏

𝜔𝑦 − 𝜔𝑦𝑏

𝜔𝑧 − 𝜔𝑧𝑏

]        (9)  

 

The gyroscope biases are unchanged during the 

prediction step. This allows 𝑓 to be built as 

 

 

                                   𝑥 =

[
 
 
 
 
 
 
 
 𝑞0 +

𝑑𝑡

2
∗ (−𝑞1(𝜔𝑥 − 𝜔𝑥𝑏) − 𝑞2(𝜔𝑦 − 𝜔𝑦𝑏) − 𝑞3(𝜔𝑧 − 𝜔𝑧𝑏))

𝑞1 +
𝑑𝑡

2
∗ (−𝑞0(𝜔𝑥 − 𝜔𝑥𝑏) − 𝑞3(𝜔𝑦 − 𝜔𝑦𝑏) − 𝑞2(𝜔𝑧 − 𝜔𝑧𝑏))

𝑞2 +
𝑑𝑡

2
∗ (−𝑞3(𝜔𝑥 − 𝜔𝑥𝑏) − 𝑞0(𝜔𝑦 − 𝜔𝑦𝑏) − 𝑞1(𝜔𝑧 − 𝜔𝑧𝑏))

𝑞3 +
𝑑𝑡

2
∗ (𝑞2(𝜔𝑥 − 𝜔𝑥𝑏) − 𝑞1(𝜔𝑦 − 𝜔𝑦𝑏) − 𝑞0(𝜔𝑧 − 𝜔𝑧𝑏))

𝜔𝑥𝑏

𝜔𝑦𝑏

𝜔𝑧𝑏 ]
 
 
 
 
 
 
 
 

                                      (10) 

 

The Jacobian can then be calculated to produce matrix 𝐹 
 

𝜕𝑓

𝜕𝑥
= 𝐹 =

[
 
 
 
 
 
 
 
 
 
 
  1 −

𝑑𝑡

2
(𝜔𝑥 − 𝜔𝑥𝑏) −

𝑑𝑡

2
(𝜔𝑦 − 𝜔𝑦𝑏) −

𝑑𝑡

2
(𝜔𝑧 − 𝜔𝑧𝑏)

𝑑𝑡

2
𝑞1

𝑑𝑡

2
𝑞2

𝑑𝑡

2
𝑞3

𝑑𝑡

2
(𝜔𝑥 − 𝜔𝑥𝑏) 1 −

𝑑𝑡

2
(𝜔𝑧 − 𝜔𝑧𝑏)

𝑑𝑡

2
(𝜔𝑦 − 𝜔𝑦𝑏) −

𝑑𝑡

2
𝑞0 −

𝑑𝑡

2
𝑞3

𝑑𝑡

2
𝑞2

𝑑𝑡

2
(𝜔𝑦 − 𝜔𝑦𝑏)

𝑑𝑡

2
(𝜔𝑧 − 𝜔𝑧𝑏) 1 −

𝑑𝑡

2
(𝜔𝑥 − 𝜔𝑥𝑏)

𝑑𝑡

2
𝑞3 −

𝑑𝑡

2
𝑞0 −

𝑑𝑡

2
𝑞1

𝑑𝑡

2
(𝜔𝑥 − 𝜔𝑥𝑏) −

𝑑𝑡

2
(𝜔𝑦 − 𝜔𝑦𝑏)

𝑑𝑡

2
(𝜔𝑥 − 𝜔𝑥𝑏) 1 −

𝑑𝑡

2
𝑞2

𝑑𝑡

2
𝑞1 −

𝑑𝑡

2
𝑞0

 
0                0                  0                  0                    1                 0          0
0                0                  0                  0                    0                 1          0
0                0                  0                  0                    0                 0          1 ]

 
 
 
 
 
 
 
 
 
 
 

                             (11) 

 

 

The measurement model ℎ(𝑥) serves to map the current 

state estimate 𝑥 onto the measurement vector y, effectively 

allowing the prediction to be compared with real-world 

measurements. Hence, this involves describing what the 

accelerometer and magnetometer should be reading given 

the current quaternion prediction, so the measurement 

vector can be defined as: 

 

𝑦 = [𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑚𝑥
𝑚𝑦 𝑚𝑧]𝑇                   (12) 

 

where 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 are acceleration in three directions and 

𝑚𝑥, 𝑚𝑦 , 𝑎𝑛𝑑 𝑚𝑧 are magnetometer outputs. 

The fixed frame gravity vector rotates into the body 

frame, represented by the unit quaternion q, mapping it into 

the accelerometer vector. This application only cares about 

the direction of the gravity vector and not its magnitude, so 

the vector is normalized before being operated on. 
 

  [

𝑎𝑥

𝑎𝑦

𝑎𝑧

] = ℎ(𝑥𝑘) = 𝑅(𝑞) ∗ 𝑔⃑ = 𝑅(𝑞) ∗ [
0
0

−1
] 

=[

−2(𝑞1𝑞3 − 𝑞0𝑞2)

−2(𝑞2𝑞3 − 𝑞0𝑞1)

−𝑞0
2+𝑞1

2 + 𝑞2
2 − 𝑞3

2

]                                                   (13) 

 

where 

𝑅 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 + 𝑞3

2 2(𝑞1𝑞2 + 𝑞0 𝑞3)  2 (𝑞1𝑞3 + 𝑞0 𝑞2)

2(𝑞1𝑞2 − 𝑞0 𝑞3) 𝑞0
2 + 𝑞1

2 + 𝑞2
2 − 𝑞3

2   2 (𝑞2𝑞3 + 𝑞0 𝑞1)

2(𝑞1𝑞3 + 𝑞0 𝑞2) 2 (𝑞2𝑞3 − 𝑞0 𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] (14) 

 

Two quaternion products can be combined to form a 

rotation matrix R(q). 

Magnetometer mapping is performed in the same way as 

with the accelerometer rotating the reference frame 

magnetic field strength vector 𝑏 , into the body frame 

represented by the estimated quaternion.  

where  

[

𝑚𝑥

𝑚𝑦

𝑚𝑧

] = ℎ(𝑥𝑘) = 𝑅(𝑞). [

𝑏𝑥

𝑏𝑦

𝑏𝑧

] =

[

𝑏𝑥(𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) + 2𝑏𝑦(𝑞1𝑞2 + 𝑞0 𝑞3) + 2𝑏𝑧(𝑞1𝑞3 + 𝑞0 𝑞2)

2𝑏𝑥(𝑞1𝑞2 + 𝑞0 𝑞3) + 2𝑏𝑦(𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) + 2𝑏𝑧(𝑞2𝑞3 + 𝑞0 𝑞1)

2𝑏𝑥(𝑞1𝑞3 + 𝑞0 𝑞2) + 2𝑏𝑦(𝑞2𝑞3 + 𝑞0 𝑞1) + 2𝑏𝑧(𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2)

]

(15) 

 

These two mapping can then be combined to form the 

full transition function. ℎ(𝑥𝑘) is presented as follows 
 

ℎ(𝑥𝑘) =

[
 
 
 
 
 
 

−2(𝑞1𝑞3 − 𝑞0𝑞2)

−2(𝑞2𝑞3 − 𝑞0𝑞1)

−𝑞0
2 + 𝑞1

2 + 𝑞2
2 − 𝑞3

2

𝑏𝑥(𝑞0
2 + 𝑞1

2 + 𝑞2
2 − 𝑞3

2) + 2𝑏𝑧(𝑞1𝑞3 − 𝑞0𝑞2)

2𝑏𝑥(𝑞1𝑞3 − 𝑞0𝑞2) + 2𝑏𝑧(𝑞2𝑞3 + 𝑞0𝑞1) 

2𝑏𝑥(𝑞1𝑞3 + 𝑞0𝑞2) + 𝑏𝑧(𝑞0
2 + 𝑞1

2 − 𝑞2
2 + 𝑞3

2)]
 
 
 
 
 
 

             (16) 

 

An attitude quaternion can be converted into Euler angles in 

the Tait-Bryan YPR (yaw pitch roll) order using 

𝑦𝑎𝑤 = 𝑎𝑟𝑐𝑡𝑎𝑛(2. (𝑞0𝑞3 + 𝑞1𝑞2), 1 − 2 . (𝑞2
2 + 𝑞3

2)) 
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𝑝𝑖𝑡𝑐ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛(2. (𝑞0𝑞1 + 𝑞2𝑞3), 1 − 2 . (𝑞1
2 + 𝑞2

2)) 

     𝑟𝑜𝑙𝑙 = 𝑎𝑟𝑐𝑠𝑖𝑛(2(𝑞0𝑞2 − 𝑞3𝑞1))                                                  (17) 

4.2. Magnetometer Calibration 

Inexpensive electronic sensors used for measuring magnetic 

fields are prone to errors caused by sensor construction and 

the ambient field. To address this, a mean square method 

was employed to calibrate a triaxial magnetometer, as 

described in articles [8, 27, and 28]. The results of this 

calibration are shown in Fig. 1, which depicts three-

dimensional positioning and perspective cross-sections of 

the measurements. Fig. 2, on the other hand, shows the 3D 

position and cross-sections of the calibrated data. 

 

 
Fig. 1. 3D position and cross sections of calibrated data. 

 

 
Fig. 2. Three-dimensional positioning and perspective 

cross-section of measurements. 

 
4.3. Experimental Verification 

This section evaluates the performance of the proposed 

approach using real data collected from a test bed, as 

illustrated in Fig 3. In this section, the following parameters 

are used: 
For this simulation, the initial values of states are 

considered as 𝑥0 = [0 0 0 0 0 0 0]𝑇 and the 

initial value of the state estimation is considered zero. The 

real noise power affecting the system is considered as 

Gaussian white noise with covariance matrices 𝑄 = 10−6𝐼 

and R.       Since the modeling is done in a hybrid way, two 

time parameters are considered T= 0.01 is the sampling time 

and 𝑑𝑡 = 5 × 10−3, which is actually the smallest time step 

for the continuous part. 
In Algorithms 1 and 2, Robbins-Monro coefficients are 

used to estimate the parameter, which is considered as the 

initial value of the parameter  𝛼 = 0.5. 
The three degrees of freedom table is used to calculate 

the difference between the estimated and actual status values. 

The designed algorithms are used to estimate the deviation 

and side angles, and the resulting error estimation is depicted 

in Fig. 4.  

 

 
Fig. 3. Physical map of three-axis turntable testing. 

 
A comparison of estimation Minimum Mean Squared 

Error (MMSE) values for designed algorithms is given in 

Table I. Mean Squared Error (Minimum MMSE) statistical 

criterion was used to evaluate the accuracy of the estimation. 

Table 1. Comparison of estimation Minimum Mean 

Squared Error (MMSE) values for designed algorithms. 

YAW PITCH ROLL  

74.361 1.418 1.006 HEKF 

20.600 0.516 0.400 HREKF 
 

As seen in Figure 4 and Table 1, HREKF performed 

much better than HEKF. It has performed very well, 

especially in the yaw direction. Meanwhile, the estimation of 

YAW values in other algorithms is not reliable. In Figure 4, 

the values of roll and pitch are considered zero, and the actual 

values of yaw are also a pseudo-triangular diagram, which is 

displayed in red color in the third diagram. The high 

performance of HREKF is evident. In the direction of ROLL 

and PITCH, this accuracy is improved.  

 
Fig. 4. Error estimation of deviation and side angles with 

the designed algorithms. 

Additionally, the gyroscope bias is continuously 

estimated using parameter estimation. The validated values 

of the gyroscope bias are shown in Fig. 5. 

                                                   

5. Conclusion 

Initial alignment is a critical issue for an inertial 

navigation system. The essential goal is to determine the 

matrix between the body and the navigation device. Kalman 

filter is a common technique to solve the alignment problem, 

but in cases where the error angle is small. If this error is large, 
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the model is non-linear and a non-linear filter should be used .  

Since the phenomena in nature are continuous and on the 

other hand the output of the sensors is discrete, all the filters 

are modeled in a hybrid way and this work has an important 

contribution in modeling the system more fully and as a 

result having less error. But despite the successes, HEKF has 

linearization error and causes cumulative error. Also, YAW 

does not follow HEKF and therefore causes divergence. In 

this paper, a new algorithm called HREKF was presented. 

The proof of the stability of this system on the one hand and 

its better results in simulation based on real data on the other 

hand, both of which are innovations of this article, show that 

HREKF has a much better performance, especially in the 

direction of YAW, compared to HEKF. This new algorithm 

is not only resistant to process and system noises but also 

insensitive and resistant to unknown inputs and modelling 

uncertainties. In addition to less structural complexity, this 

proposed algorithm has a more effective performance in 

estimating the YAW direction and removing the disturbance. 
  

6. Appendix 

(Proof of Theorem 1) 

For the stability analysis, the following assumptions and 

definitions have been used. Consider that, we have used it for 

stability analysis of the system (𝐴 − 1). 

{
𝑥̇(𝑡) = 𝑓(𝑥, 𝑢, 𝑡)𝑑𝑡 + 𝑔(𝑥, 𝑢, 𝑡)𝜔(𝑡)           𝑡 ∈ ℝ𝑡0

+ ∖ 𝑡𝑘   

𝑥(𝑡) = ℎ(𝑥̂(𝑡𝑘
−), 𝑢(𝑡𝑘

−))          𝑡 = 𝑡𝑘                       (𝐴 − 1)
 

Eq. (𝐴 − 1) has been written in a general form and Eq. 

(1) is a special case of this form. 

Some definitions 

The following definitions are necessary to give the 

stability conditions.  

Definition 1 [30]: Given any 𝐶2,1  function  𝑉: 𝜒 ×
ℝ𝑡0

+ → ℝ+ , the differential operator ℒ  associated with the 

continuous stochastic equation stated above, is defined as 

ℒ𝑉(𝑥, 𝑡) ∶=
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
+

𝜕𝑉(𝑥,𝑡)

𝜕𝑡
𝑓(𝑡, 𝑥, 𝑢) +

1

2
[𝑔𝑇(𝑡, 𝑥, 𝑢)

𝜕2𝑉(𝑥,𝑡)

𝜕𝑥2 𝑔(𝑡, 𝑥, 𝑢)].                                                                         

By It𝑜̂ 's formula in Hu et. al. [29], It obtained that 

𝑑𝑉(𝑥, 𝑡) = ℒ𝑉(𝑥, 𝑡)𝑑𝑡 +
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
𝑔(𝑡, 𝑥, 𝑢)𝑑𝜔(𝑡)            𝑡 ∈ ℝ𝑡0

+ ∖ 𝑡𝑘                                                                                   

Definition 2 [25]: A 𝐶2,1 function 𝑉: 𝜒 × ℝ𝑡0
+ → ℝ+ is 

called an SISS-Lyapunov function, if there exist 𝛼1, 𝛼2, 𝜌 ∈
𝑘∞, 𝜓 ∈ 𝒫 such that for all 𝑥(𝑡0) ∈ 𝜒, 𝑢 ∈ 𝑈 

𝛼1(|𝑥|) ≤ 𝑉(𝑥, 𝑡) ≤ 𝛼1(|𝑥|)               𝑡 ∈ ℝ𝑡0
+                                                                                                                          

|𝑥| ≥ 𝜌(‖𝑢‖) ⟹

{
ℒ𝑉(𝑥, 𝑡) ≤ −𝑥̂𝑘(𝑉(𝑥, 𝑡))       𝑡 ∈ ℝ𝑡0

+ ∖ 𝑡𝑘

𝑉(ℎ((𝑥, 𝑡), 𝑡) ≤ 𝜓(𝑉(𝑥, 𝑡))      𝑡 = 𝑡𝑘
                                                                               

 

where 𝒫 denotes the set of the functions and 𝜒 and 𝑈 are 

initial and input spaces, respectively. 
We define the range of 𝒯 as 𝒯 = {𝑡1, 𝑡2, 𝑡3, … }, where 

𝑡𝑘  are the measurement times. We need the following 

definition. Consider following impulsive dynamic 

{

𝑒̇(𝑡) = 𝑓(𝑥, 𝑢, 𝑡) + 𝜔(𝑡)       𝑡 ≠ 𝑡𝑘
 

𝑒(𝑡𝑘
+) = 𝑒(𝑡𝑘

−) − 𝐾𝑘 (𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘
−)))   𝑡 = 𝑡𝑘

 (𝐴 − 2)    

Now, consider following an impulsive system [30] which 

Theorem A.1 [25]: Consider impulsive stochastic 

nonlinear system (A-1). Suppose 𝑉: 𝜒 × ℝ𝑡0
+ → ℝ+  is a 

SISS-Lyapunov function for (𝐴 − 1),  where 𝜙 ∈  𝑃  is 

convex and 𝜓 ∈  𝑃 is concave. If there is certain 𝑇, 𝛿 >  0 

such that for all 𝑎 >  0,  

∫
𝑑𝑠

𝜑(𝑠)

𝜓(𝑎)

𝑎
≤ 𝑇 − 𝛿                                                     (𝐴 − 3) 

Then, the system (𝐴 − 1) is SISS for all impulsive time 

sequences where 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝑇. 

Proof of Theorem 1 

Consider system (𝐴 − 1)  and Theorem A.1.  By 

selecting Lyapunov function 𝑉(𝑒, 𝑡) =
1

2
𝑒𝑇𝑃𝑒  we have 

that
1

2
𝜆𝑚𝑖𝑛(𝑃)𝑒𝑇𝑒 ≤ 𝑉(𝑒, 𝑡) ≤

1

2
𝜆𝑚𝑎𝑥(𝑃)𝑒𝑇𝑒. So the first 

condition of Definition4 is established. Now, we need to 

check the second condition of Definition 4. 

ℒ𝑉(𝑥, 𝑡) = 𝑒𝑇𝑃𝑓(𝑥, 𝑡) + 𝑔𝑇(𝑥, 𝑡)𝑃𝑔(𝑥, 𝑡) −
𝑒𝑇𝑃𝑓(𝑥̂, 𝑡) − 𝑔𝑇(𝑥̂, 𝑡)𝑔̂(𝑥, 𝑡)                                  (𝐴 − 4) 

The function 𝑓(. ) satisfies the Lipshitz condition that's 

mean ‖𝑓(𝑥, 𝑡) − 𝑓(𝑥̂, 𝑡)‖2 ≤ 𝜆‖𝑥 − 𝑥̂‖2 = 𝜆‖𝑒‖2  where 

𝜆 is a positive scalar value. In general, we have 

 𝑔𝑇𝑃𝑔 ≤ 𝜆𝑚𝑎𝑥(𝑃)‖𝑔‖2 , 𝑔̂𝑇𝑃𝑔̂ ≤ 𝜆𝑚𝑎𝑥(𝑃)‖𝑔̂‖2 . A 

basic condition is 𝑒𝑇𝑃𝑓(𝑥, 𝑡) − 𝑒𝑇𝑃𝑓(𝑥̂, 𝑡) ≤ −𝜑(𝑒𝑇 , 𝑒). 

Now, we have  

𝑒(𝑡𝑘
−) − 𝐾𝑘 (𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘

−)))
𝑇

𝑝(𝑒(𝑡𝑘
−) − 𝐾𝑘(𝑦𝑘 −

ℎ(𝑥̂(𝑡𝑘
−))) ≤ 𝜓(𝑣(𝑥, 𝑡))𝑇                                            (𝐴 − 5)                                  

So, by setting conditions of Definition 4 and assuming 

∫
𝑑𝑠

𝜑(𝑠)

𝜓(𝑎)

𝑎
≤ 𝑇 − 𝛿   in Theorem A.1, the system is 

stochastic global stability. Now, assuming 𝜑 =  𝑐𝑉 (𝑒, 𝑡) 

and 𝜓 = 𝑒−𝑑𝑉(𝑒, 𝑡) , we have ℒ𝑉(𝑥, 𝑡) = 𝑒𝑇𝑃𝑓(𝑥, 𝑡) −
𝑒𝑇𝑃𝑓(𝑥̂, 𝑡) ≤ −𝑐𝑒𝑇𝑃𝑒. 

This equation indicates the dynamic of continuous of 

systems without impulses is stochastic global stability. Since 

we assumed the stability of the continuous system, no need 

to check it. Now, consider the second condition of (11) at 

impulsive instances. 

𝑉(ℎ((𝑥, 𝑡), 𝑡) = (𝑒(𝑡𝑘
−) − 𝐾𝑘(𝑦𝑘 −

ℎ(𝑥̂(𝑡𝑘
−))𝑇𝑃(𝑒(𝑡𝑘

−) − 𝐾𝑘(𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘
−))) ≤

𝑒−𝑑𝑒𝑇𝑃𝑒(𝑡𝑘)                                                              (𝐴 − 6) 

We set, 𝑒(𝑡𝑘
−) = 𝑒, so 

𝑒𝑇(𝑃 − 𝑒−𝑑𝑃)𝑒 + 2𝑒𝑇𝑃𝐾𝑘(𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘
−)) +

𝐾𝑘(𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘
−))

𝑇
𝑃𝐾𝑘(𝑦𝑘 − ℎ(𝑥̂(𝑡𝑘

−))) <        (𝐴 − 7) 
In the above relation, the inequality 2𝑥𝑇𝑦 ≤∈ 𝑥𝑇𝑥 +

𝜖−1𝑦𝑇𝑦  is used. So, we use an inequality matrix: 

𝑉(ℎ((𝑥, 𝑡), 𝑡) ≤ 𝑒𝑇(𝑃 − 𝑒−𝑑𝑃)𝑒 + 𝜖𝑒𝑇𝑃𝐾𝑘𝐾𝑘
𝑇𝑃 +

𝜖−1(𝑦 − ℎ(𝑡𝑘
−1))

𝑇
(𝑦 − ℎ(𝑥(𝑡𝑘)))                        (𝐴 − 8) 

In the above relation (𝑦 − ℎ(𝑡𝑘
−1))

𝑇
(𝑦 − ℎ(𝑥(𝑡𝑘))) ≤

𝜂𝑒𝑇𝑒  should be used which arises from the Lipshitz 

condition. So, we have 𝑒𝑇(𝑃 − 𝑒−𝑑𝑃 + 𝜖𝑝𝐾𝑘𝐾𝑘
𝑇 +

𝜖−1𝜂𝐼)𝑒 < 0. Since the main dynamics is continuous, and 

using Shcur compliment, then 𝑑 < 0  and 

[

(𝑒−𝑑 − 1)𝑃 𝑃𝐾𝑘 𝐼

𝐾𝑘
𝑇𝑃𝑇 𝜖−1𝐼 0

𝐼 0 𝜖𝜂−1𝐼

] > 0                         (𝐴 − 9) 

𝑃 >  0 (Symmetric positive matrix) and 𝜖 >  0 (scalar) 

then condition 

∫
1

𝑣

𝑒−𝑑𝑎

𝑎
𝑑𝑣 =

1

𝑐
𝑙𝑛 𝑣 |𝑒

−𝑑𝑎
𝑎

=
1

𝑐
(𝑙𝑛 𝑒−𝑑𝑎 − 𝑙𝑛 𝑎) =

𝑙𝑛 𝑒−𝑑

𝑐
= −

𝑑

𝑐
≤ 𝑇 − 𝛿                                              (𝐴 − 10) 

So, we have 𝑇 > −
𝑑

𝑐
+ 𝛿. The proof is completed. 
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Remark 3: Note that Theorem A.1 is a general theorem. If 

we compare with the form of system (1), we see that the 

function g(x, u, t) is equal to the unit function in system (1) 

and this system is a special firm of (A − 1) with g(x, u, t) =
𝐼. Therefore, without losing the principle of the problem, we 

advanced the proof in a general way, until we see that the 

function g(x, u, t)  satisfies the conditions of the problem 

(gTPg ≤ λmax(P)‖g‖2 ). Therefore, the function g(x, u, t) 

does not appear in the final results. 

 

7.Acknowledgment 

The authors would like to thank the associate editor and the 

anonymous reviewers for their valuable comments and 

constructive suggestions. They were very helpful for this 

study. We also thank the Laboratory of Instrumentation of 

the University of Science and Technology for their 

cooperation. 

 

8. References 

[1] S. Ashraf, P. Aggarwal, P. Damacharla, "A low-cost 

solution for unmanned aerial vehicle navigation in a global 

positioning system–denied environment", International 

Journal of Distributed Sensor Networks, vol. 14, no. 6, 2018. 

[2] V.H.A. Ribeiro, R. Santana, G. Reynoso-Meza, 

"Random vector functional link forests and extreme learning 

forests applied to UAV automatic target recognition", 

Engineering Applications of Artificial Intelligence, vol. 117, 

article no. 105538, 2023. 

[3]   M. Gunia, Y. Wu, N. Joram, F. Ellinger, "Building 

up an inertial navigation system using standard mobile 

devices", Journal of Electrical Engineering, vol. 5, pp. 299-

320, 2017. 

[4] M.T. Sabet, H.M. Daniali, A. Fathi, "A low-cost dead 

reckoning navigation system for an AUV using a robust 

AHRS: Design and experimental analysis", IEEE Journal of 

Oceanic Engineering, vol. 43, no. 4, pp. 927-939, 2017. 

[5] P.K. Yoon, S. Zihajehzadeh, B.S. Kang, "Robust 

biomechanical model-based 3-D indoor localization and 

tracking method using UWB and IMU", IEEE Sensors 

Journal, vol. 17, no. 4, pp. 1084-96, 2014. 

[6] W. Li, J. Wang, "Effective adaptive Kalman filter for 

MEMS-IMU/magnetometers integrated attitude and heading 

reference systems", The Journal of Navigation, vol. 66, no. 

1, pp. 99-113, 2013. 

[7] Y. Liu, X. Xu, X. Liu, "A self-alignment algorithm 

for SINS based on gravitational apparent motion and sensor 

data denoising", Sensors, vol. 15, no. 5, pp. 9827-53, 2015. 

[8] D. Titterton, J.L. Weston, J. Weston, "Strapdown 

inertial navigation technology", IET, 2004. 

[9] R. Munguía, A. Grau, "A practical method for 

implementing an attitude and heading reference system", 

International Journal of Advanced Robotic Systems, vol. 11, 

no. 4, pp. 62, 2014. 

[10]   L. Chang, F. Zha, F. Qin, "Indirect Kalman filtering 

based attitude estimation for low-cost attitude and heading 

reference systems", IEEE/ASME Transactions on 

Mechatronics, vol. 22, no. 4, pp. 1850-1858, 2017. 

[11]   J.K. Lee, M.J. Choi, "A sequential orientation 

Kalman filter for AHRS limiting effects of magnetic 

disturbance to heading estimation", Journal of Electrical 

Engineering Technology, vol. 12, pp. 1675-1682, 2017. 

[12]   F. Yin, L. Wang, W. Tian, X. Zhang, "Kinematic 

calibration of a 5-DOF hybrid machining robot using an 

extended Kalman filter method", Precision Engineering, vol. 

79, pp. 86-93, 2023. 
یابی در برابر  سازی موقعیت مقاوم "   ، خالوزاده   ، ح   ، عرفانیان ،  ع   ، مجیدی   ، م   ]13[

از سامانه   GPSفریب   استفاده  برق   . Loran-Cو    INSهای  با  مهندسی  مجله 
 1377- 1365، صفحه  85،شماره پیاپی  48دوره  دانشگاه تبریز،  

[14]   X. Kai, L. Liangdong, L. Yiwu, "Robust extended 

Kalman filtering for nonlinear systems with multiplicative 

noises", Optimal Control Applications and Methods, vol. 32, 

no. 1, pp. 47-63, 2011. 

[15]   X. Kai, C. Wei, L. Liu, "Robust extended Kalman 

filtering for nonlinear systems with stochastic uncertainties", 

IEEE Transactions on Systems, Man, and Cybernetics-Part 

A: Systems and Humans, vol. 40, no. 2, pp. 399-405, 2009. 

[16]   B. Candan, H.E. Soken, "Robust attitude estimation 

using IMU-only measurements", IEEE Transactions on 

Instrumentation and Measurement, vol. 70, pp. 1-9, 2021. 

[17]   D.A. Aligia, B.A. Roccia, C.H. De Angelo, G.A. 

Magallan, G.N. Gonzalez, "An orientation estimation 

strategy for low cost IMU using a nonlinear Luenberger 

observer", Measurement, vol. 173, article no. 108664, 2021. 

[18]   T. Du, L. Guo, J. Yang, "A fast initial alignment for 

SINS based on disturbance observer and Kalman filter", 

Transactions of the Institute of Measurement and Control, 

vol. 38, no. 10, pp. 1261-1269, 2016. 

[19]   J. Sun, X.S. Xu, Y.T. Liu, "Initial alignment of large 

azimuth misalignment angles in SINS based on adaptive 

UPF", Sensors, vol. 15, no. 9, pp. 21807-21823, 2015. 

[20]   S.P. Dmitriyev, O.A. Stepanov, S.V. Shepel, 

"Nonlinear filtering methods application in INS alignment", 

IEEE Transactions on Aerospace and Electronic Systems, 

vol. 33, no. 1, pp. 260-272, 1997. 

بین مدل  کننده پیش طراحی کنترل " ع،.علما، م، شاصادقی،ا، رمضانی،    ]21 [

های هایبرید مرکب منطقی دینامیکی: رویکرد تابع لیاپانف  پایدارساز برای سیستم 

بی  نُرم  بر  برق ،  " نهایت مبتنی  مهندسی  تبریز،  ، مجله  ،شماره  50دوره   دانشگاه 

   . 1744- 1734،صفحه  4
[22]   K. Masuya, T. Sugihara, "A nonlinear 

complementary filter for attitude estimation with dynamics 

compensation of MARG sensor", in Proceedings of the 2016 

IEEE International Conference on Advanced Intelligent 

Mechatronics (AIM), pp. 976-981, 2016. 

[23]   Y.C. Fan, Y.H. Tseng, C.Y. Wen, "A Novel Deep 

Neural Network Method for HAR-Based Team Training 

Using Body-Worn Inertial Sensors", Sensors, vol. 22, no. 21, 

article no. 8507, 2022. 

[24]   D. Simon, "Optimal state estimation: Kalman, H 

infinity, and nonlinear approaches", John Wiley & Sons. 

[25] W. Ren, J. Xiong, "Stability analysis of impulsive 

stochastic nonlinear systems", IEEE Transactions on 

Automatic Control, vol. 62, no. 9, pp. 4791-4797, 2017. 

[26] Liguang Xu, Shuzhi Sam Ge & Hongxiao Hu, 

"Boundedness and stability analysis for impulsive stochastic 

differential equations driven by G-Brownian motion", 

International, Journal of Control, 92:3, 642-652, 2019. 

[27] L.C.G. Rogers, D. Williams, "Diffusions, Markov 

processes and martingales", Volume 2, Itô calculus, 

Cambridge University Press, 2000. 

[28] M. Kok, J.D. Hol, T.B. Schön, "Calibration of a 

magnetometer in combination with inertial sensors", in 

Proceedings of the 2012 15th International Conference on 

Information Fusion, pp. 787-793, 2012. 



Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 4, December 2024                                                                                                                             Serial no. 110 

DOI: 10.22034/tjee.2023.57843.4683 

 

504 

[29] X. Mao, "Stochastic Differential Equations and 

Applications", 2nd ed., Elsevier, Chichester, U.K, Horwood, 

2007. 

[30] L. Hu, X. Li, X. Mao, "Convergence rate and 

stability of the truncated Euler-Maruyama method for 

stochastic differential equations", Journal of Computational 

and Applied Mathematics, vol. 337, pp. 274-289, 2018.

 


