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Abstract 

Web applications (apps) are integral to our daily lives. Before users can use web apps, testing must be conducted to ensure 

their reliability. There are various approaches for testing web apps. However, they still require improvement. In fact, they 

struggle to achieve high coverage of web app functionalities. On the one hand, web apps typically have an extensive state 

space, which makes testing all states inefficient and time-consuming. On the other hand, specific sequences of actions are 

required to access certain functionalities. Therefore, the optimal testing strategy extremely depends on the app’s features. 

Reinforcement Learning (RL) is a machine learning technique that learns the optimal strategy to solve a task through 

trial-and-error rather than explicit supervision, guided by positive or negative reward. Deep RL extends RL, and exploits 

the learning capabilities of neural networks. These features make Deep RL suitable for testing complex state spaces, such 

as those found in web apps. However, modern approaches support fundamental RL. We have proposed WeDeep, a Deep 

RL testing approach for web apps. We evaluated our method using seven open-source web apps. Results from experiments 

prove it has higher code coverage and fault detection than other existing methods. 
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1. Introduction 

Web technologies have advanced and innovated at a 

remarkable rate over the past decades. Web applications 

(apps) are currently as effective as desktop apps. Besides 

being competitively convenient, they do not require 

complicated installation. According to the most recent 

survey by Internet World Stats [1], nearly 68 percent of 

the world’s population uses web apps. With the 

widespread adoption of web apps, there is a greater need 

to improve their reliability. This is especially true as more 

users rely on web apps to perform daily tasks and as more 

companies rely on these apps to drive their enterprises. 

There are also many complexities associated with web 

apps, such as sophisticated business logic implemented in 

multiple languages on the client and server sides. Since 

the majority of their success depends on user feedback, it 

is essential for them to be reliable while they are being 

used. Consequently, an effective testing phase is essential 

for reducing the likelihood of web app failures. 

A web app is composed of one or more HTML pages, 

which serve as the user interface (UI). A Document 

Object Model (DOM) [2] represents each HTML page 

during runtime. DOM specifies the logical structure of 

web pages and the means by which they are accessed and 

altered. DOM can be changed dynamically by its API 

which generates various states for web apps. Each DOM 

or state contains various UI elements, such as buttons, 

links, and so on. A web app is event-based, which implies 

that its behavior is determined by user actions such as 

button clicks. Because of the event-based nature of web 

apps, numerous approaches [3]–[7] have focused on auto-

generating events to test web apps. 

Regardless of the testing strategy, the objective is to 

provide events that disclose states associated with web 

app functionalities. However, significant obstacles exist 

in this area. The state explosion challenge [8] refers to the 

fact that web apps typically comprise a huge state space 

because of a large number of elements and potential 

events. For web apps, testing the vast space of all possible 

events, states, and their transitions takes a lot of effort and 

is challenging to scale. As a result, automated testing 

methodologies must only test the sequences of events and 

states that are important to the web app’s functionalities. 

Notably, certain web app functionalities can only be 

accessed through a specific sequence of events. 

There are various techniques for web app automated 

testing that attempt to maximize code coverage and fault 

detection during testing. Using random events, random 

testing strategies [3] stimulate the Application Under Test 

(AUT). However, when dealing with difficult transitions, 
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random testing without direction may get stuck. model-

based solutions [4]–[6] create a behavioral model of the 

AUT and then utilize it to test the web app and produce 

events. In this instance, high-quality models are crucial 

for achieving a successful testing outcome. Nevertheless, 

the constructed behavioral model may only encompass a 

portion of the web app’s functionalities, thereby limiting 

the effectiveness of the generated test cases. 

Recent research on Reinforcement Learning (RL) [9] has 

shown that it can learn a policy to test web apps [7]. RL is 

an approach in machine learning that does not require a 

labeled training set as input because the learning process 

is guided by the positive or negative reward encountered 

during task execution. As a result, it represents a method 

for dynamically developing an appropriate testing 

approach based on previous successful or unsuccessful 

experiences. Even though RL has been used to address the 

issue of web testing [7], only the most fundamental form 

of RL—namely, tabular RL—has been used to test web 

apps so far. In tabular RL, the state-action values are 

saved in a table. Deep neural networks replaced tabular 

techniques with Deep learning approaches, in which the 

action-value function is learned from a neural network’s 

previous positive and negative experiences. Deep RL has 

proven significantly superior to tabular RL [10], [11] 

when the state space is large (e.g., many events and states 

within a web app). In this regard, we argue that the state 

space of web apps is an excellent candidate for the 

effective use of Deep RL rather than tabular RL for testing 

reasons. 

This article introduces the first Deep RL approach for 

automated web app black-box testing, named WeDeep 

(Web Application Testing Using Deep Reinforcement 

Learning). WeDeep employs a Deep neural network to 

discover the optimal testing strategy by analyzing past 

attempts. It achieves high scalability and the ability to 

manage complex web app functionalities because of this 

Deep neural network. WeDeep applied to a benchmark of 

seven web apps. The benchmark compared WeDeep’s 

performance to that of state-of-the-art testing approaches 

for web apps, such as WebExplor [7] and DIG [6]. The 

experimental results confirmed the hypothesis that Deep 

RL outperforms tabular RL in testing the state space of 

web apps, with WeDeep detecting the most of the faults 

and achieving the highest code coverage. 

The contributions of this paper are summarized as follows: 

• We propose WeDeep, the first testing approach 

based on Deep RL. 

• We present an empirical evaluation of the 

proposed approach. Results show that our 

approach outperforms existing ones in terms of 

both code coverage and fault detection. 

The remainder of this paper is organized as follows: 

Section 2 gives a motivation example and an introduction 

to Deep RL. Section 3 surveys related work. Section 4 

describes our Deep RL based testing approach. Section 5 

presents an empirical evaluation of our proposed 

approach on seven web apps. Section 6 concludes the 

paper and outlines future work. 

 

2. Motivation and Background 

In this section, we describe our motivation for our 

research, followed by some background on Deep RL. 

2.1. Motivating 

Testing web apps is one of the primary activities that 

contributes significantly to web app quality [12], [13]. We 

view the automatic testing of web app as a problem 

involving the generation of action sequences to attain 

various web app states. To put it another way, carrying out 

tasks in the appropriate order can assist in detecting 

possible faults. To that end, it will be necessary to devise 

an efficient testing method to enable us to visit a wider 

variety of states within the available time constraint. 

Some states can only be reached via specific action 

sequences; thus, the approach should be able to 

effectively create those as well as cover a wide variety of 

states. 

For example, Claroline [14] is one of our subject web apps. 

It is a collaborative learning environment that enables 

academic institutions or teachers to design and manage 

online courses. To create an announcement for their 

students in the Claroline web app, a teacher should 

perform the following actions: typing username, typing 

password, clicking on the login button, clicking on the 

target course, clicking on the announcement link, clicking 

on the add announcement button, typing the title, typing 

the description, and clicking on the OK button. If there is 

a fault in the creation of an announcement, this path will 

lead to its discovery. Nevertheless, web apps typically 

have a large state space due to the large number of 

elements and possible actions [8], making it difficult to 

generate valid action sequences efficiently. Any 

interruption during the action sequence would prevent the 

objective state from being reached. In the described 

sequence, if in the final stage another element, such as the 

course homepage, is clicked instead of the OK button, 

neither an announcement nor the potential fault will be 

generated. 

We observe that if an agent can imitate human behavior 

with the app, it can generate valid action sequences 

efficiently. For instance, if the agent clicks on the OK 

button after filling out the title and description fields, an 

announcement will be generated rather than the course 

homepage. Motivated by this observation, we design a 

Deep RL agent, which has been shown to be vastly 

superior to tabular RL [10], [11], when the state space is 

large (e.g., many actions and states within a web app). Our 

Deep RL agent generates actions for which the action 

sequence generated is consistent with human behavior. In 

fact, action sequences are generated by the Deep RL agent 

to effectively attain beneficial states. 

 

2.2. Deep RL in brief  

A model-free RL technique called Q-learning [15] aims to 

learn a policy for any Markov decision process by 

identifying the best possible policy, 𝜋, to maximize the 

expected cumulative reward for a series of actions. Q-

learning is based on trial-and-error learning, in which an 

agent interacts with the environment and assigns 𝑄 values, 

which are approximated values, to each state-action pair. 

As depicted in Fig. 1, the agent interacts iteratively with 

the environment. Assuming 𝑆  and 𝐴  are the sets of all 

states and actions, at each iteration 𝑡, the agent selects and 

executes an action 𝑎𝑡 ∈ 𝐴 based on the current state 𝑠𝑡 ∈
𝑆 . 𝑠𝑡  and 𝑎𝑡  represents the state and action at time 𝑡 , 

respectively. After performing the action, the agent can 
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observe a new state 𝑠𝑡+1 ∈ 𝑆. In the meantime, an instant 

reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡) is received. This is the immediate 

reward for doing action 𝑎𝑡 in state 𝑠𝑡. The agent will then 

use the Bellman equation [16] to update the 𝑄 value, as 

follows: 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ←  𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∗ (𝑟𝑡 + 𝛾 ∗
max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))   (1) 

 

𝛼 is a learning rate between 0 and 1 and 𝛾 is a discount 

factor between 0 and 1 in this equation. After being 

learned, these 𝑄  values can determine the optimal 

behavior in each state by selecting the actions 𝑎𝑡 =
arg max

𝑎𝑡+1

𝑄(𝑠𝑡 , 𝑎𝑡+1). 

 

 
Fig. 1: Deep RL overview 

 

Deep Q-Networks (DQN) are used to scale traditional Q-

learning to larger state and action spaces [10], [11]. 

𝑄(𝑠𝑡 , 𝑎𝑡) are stored and visited in a Q-table for traditional 

Q-learning. It can only manage state and action spaces 

with low dimensions. As shown in Fig. 1, DQN is a multi-

layered neural network that outputs 𝑄  values for each 

action 𝑎𝑡 in a given state 𝑠𝑡, i.e., 𝑄(𝑠𝑡 , 𝑎𝑡). DQN can scale 

more complicated state and action spaces because a neural 

network can input and output high-dimensional state and 

action spaces. In contrast to a Q-table, a neural network 

can generalize 𝑄 values to previously unobserved states. 

It employs the following loss function [10], [11] to modify 

the neural network in order to reduce the error: 

 

𝑙𝑜𝑠𝑠 = (𝑟𝑡 +  𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))
2

 (2) 

 

In other words, the neural network is trained to predict the 

value of 𝑄 as follows, given the input (𝑠𝑡 , 𝑎𝑡): 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 +  𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1)  (3) 

 

In a training sample, therefore, the input is (𝑠𝑡 , 𝑎𝑡) and the 

output is the corresponding 𝑄  value, which can be 

calculated as 𝑟𝑡 +  𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1). 

 
3. Related Work 

Various techniques have been suggested for web testing. 

In the following, we will provide a concise discussion of 

the most important solutions and their limitations, which 

will highlight the need for an innovative and effective 

approach to web testing. 

Random testing techniques, such as Crawljax [3] by 

Mesbah et al., generate and send random events to a web 

app. Although this technique is straightforward, there is 

no guidance to ensure that the testing is efficient. Testing 

therefore comprises numerous inefficient or repetitive 

actions and has a low likelihood of exposing difficult-to-

reach functionalities. Some states are more accessible 

than others, so they will be executed more frequently 

under random strategy, whereas some states that are 

difficult to reach may not be executed at all. 

The model-based method is a major paradigm that may be 

used to achieve automatic web testing [4]–[6]. In order to 

detect faults in web apps, this method creates models to 

characterize their behaviors in advance, and then produces 

test cases from these models. The model is a directed 

graph in its most basic form, with nodes representing 

various DOM states and edges representing the event-

driven transitions connecting those states. 

ATUSA [4] by Mesbah et al. finds the shortest path from 

the main page to each of the nodes that has no outgoing 

edges. A test case is created in this manner. Biagiola et al. 

created SubWeb [5], a search-based approach to web 

testing. SubWeb samples the input space iteratively, 

selecting the most suitable candidates for test cases and 

evolving them using genetic search operators to generate 

new test cases. However, defining an effective fitness 

function requires a manual analysis of behavioral model 

data. This is a tedious and lengthy process for testers. In 

fact, this kind of information relies on the business logic 

of the web app, so it cannot be made fully automatic. In 

addition, the evaluation of the fitness function is 

expensive because a large number of candidates must be 

generated and executed in the browser prior to convergent 

on an adequate set of tests. 

Biagiola et al.'s DIG [6] is a diversity-based method for 

generating web tests that draws inspiration from adaptive 

random testing [17]. DIG prioritizes candidate tests by 

selecting those that are most different from those that have 

already been generated. DIG can evaluate a large number 

of candidate test cases without executing them in the 

browser, resulting in quicker test generation than SubWeb. 

DIG, unlike SubWeb, is automated and does not require 

any manual effort to develop test cases. 

The completeness of the derived behavioral model has a 

significant impact on the effectiveness of the generated 

test cases in model-based testing. It's likely that the model 

will only include some web app functionalities while 

excluding others from testing. In addition, web apps 

frequently have dynamic content updates (through 

languages like JavaScript and the DOM API), which are 

difficult for behavioral models to capture. It is also 

necessary to have expert knowledge of the subject in order 

to construct high-quality models [6]. In order to create a 

behavioral model, it is common practice to randomly 

traverse the UI of a web app. However, this technique is 

redundant and limited when considering web apps. 

Model-based methods tend to make test cases that cannot 

be run on web apps and are not useful [6]. 

Similarly, research has investigated the use of RL for web 

app testing. WebExplor [7] by Zheng et al. utilizes RL, 

allowing it to anticipate and generate test cases 
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incrementally while interacting with a web app. 

WebExplor employs Q-learning [15], a model-free RL 

method, based on curiosity reward to accomplish testing. 

Similarly, QExplore [18] is another existing work that is 

most relevant to both the RL and web domain, since it 

uses RL to develop behavioral models for web apps while 

interacting with them. Both WebExplor and QExplore, in 

contrast to our study, are based on the most basic type of 

RL, tabular RL. In contrast, WeDeep learns the action-

value function based on Deep RL during its interaction 

with the AUT. To the best of our knowledge, WeDeep is 

the first Deep RL-based approach that conducts testing for 

web apps and outperforms state-of-the-art methods in 

terms of effectiveness. 

 

4. Proposed Approach 

This section covers WeDeep (Web Application Testing 

Using Deep Reinforcement Learning), our proposed Deep 

RL-based approach to testing web apps. In Fig. 2, we can 

see the main building blocks of the proposed approach, 

which are Browser, DOM Analyzer, DQN, Action 

Selector, Observer, Calculator, and Memory. 

 

 
Fig. 2: Proposed approach Overview 

 

It is the responsibility of Browser to provide a common 

interface for communicating with the web app. It has 

access to runtime DOMs and the JavaScript engine. 

Additionally, Browser executes the actions in web app 

states. DOM Analyzer parses the DOM tree and extracts 

the state and actions associated with it. The current state 

and actions are converted into an input by DOM Analyzer, 

which is subsequently sent into the DQN. DQN receives 

the web app’s state and its actions. DQN uses a model of 

a neural network to figure out 𝑄 values for actions which 

it then sends to Action Selector. The next action to execute 

is selected by Action Selector based on an Epsilon-Greedy 

policy [9]. The browser executes the selected action. The 

web app enters a new state. Observer is responsible for 

monitoring the status of Browser given that failures can 

be automatically caught. If a failure occurred, Observer 

would append the sequence of actions to the failed test set 

for the tester to examine. Using equation (3), Calculator 

computes the transition reward and obtains the 𝑄 value. 

The transition is stored in Memory along with the state, 

action, and 𝑄 value. DQN learns from a sampling batch 

of transitions in Memory to update its weights. DQN 

would learn poorly if it merely used sequential samples of 

experience from the environment because of their 

correlation [10], [11]. This correlation is broken by 

sampling Memory at random. 

 

4.1. Problem Formulation 

To use Deep RL, we must first convert the web app testing 

problem to the conventional mathematical formalization 

of RL. The web app testing problem can be formalized 

formally as a Markov decision process, which can be 

demonstrated by a 4-tuple, 〈𝑆, 𝐴, 𝑃, 𝑅〉 . These are 

described below. 

 

𝑺: States 

Our approach is black-box because it does not access the 

AUT source code. It only uses the UI of AUT. WeDeep 

extracts the DOM from the web app’s current UI. 

WeDeep analyzes the DOM to find clickable elements in 

the current state. A DOM element is clickable if it has a 

click event listener attached to it, or if it is clickable in 

general, such as element 〈𝑎〉. State 𝑠𝑡  is represented by 

(𝑐1, 𝑐2, … , 𝑐𝑛), where 𝑐𝑖 are the clickable elements in 𝑠𝑡. 

Each 𝑐𝑖 is an index that indicates the element’s position in 

the DOM tree’s pre-order traversal. 

Fig. 3 illustrates the partial DOM trees of two pages, 

DOM 1 and DOM 2, as an example. They are both made 

up of elements 〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑝〉 and〈𝑎〉. The elements 

that can be clicked (only elements 〈𝑎〉) are highlighted. 

DOM 1’s pre-order traversal is 

(〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑎〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑝〉), and DOM 2’s is 

(〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑝〉, 〈𝑝〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑎〉) . For simplicity, 

we replace elements that can be clicked with 1 and those 

that cannot with 0. They are transformed into 

(0, 0, 1, 1, 0, 1, 0)  and (0, 0, 0, 0, 0, 1, 1) . To acquire 𝑠1 

and 𝑠2, the respective states of DOM 1 and DOM 2, we 

must take into account the positions of clickable elements, 

i.e., the positions of number 1. As a result, s1 = (2,3,5) 

and s2 = (5,6). 

 

𝑨: Actions 

Clickable elements indicate actions. In other words, 

clickables and click events in web apps are formulated as 

actions in the Markov decision process. Actions are 

represented by the index of the clickables in the relevant 

state, which is similar to states. In 𝑠1, for example, there 

are three actions marked by 𝐴1 = (2, 3, 5). In the same 

way, 𝐴2 = (5, 6) shows that 𝑠2  has two actions. In this 

paper, we don’t make a difference between actions and 

events, because they are the same. In web apps, clickables 

suffice to complete the majority of tasks. We focus on 

producing action sequences rather than input values, as in 

previous work [6], [7]. When acting on elements that 

require input data, random values will be generated in 
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accordance with W3C guidelines [19]. For instance, when 

interacting with HTML input elements such as email or 

text that require user input data, a random email or text is 

generated for them. WeDeep allows you to manually enter 

data for certain inputs (e.g., username and password). 

 

 
Fig. 3: Partial DOM trees 

 

𝑷: Transition Function 

The transition function indicates the state the web app will 

enter once an event occurs. We have no control over it; 

the AUT decides what it is. 

 

𝑹: Reward 

When WeDeep executes an event, it receives a reward. 

We present a mechanism for determining the reward that 

complements our testing approach. The reward function 

gives a bigger reward to actions that change the state a lot. 

This is a heuristic way to understand which actions lead 

to new functionalities. The intuition is to provide greater 

rewards for actions that can result in multiple new actions. 

In fact, a state with more new clickables is more likely to 

result in additional states and functionalities. It is 

important to note that our thinking about reward function 

is similar to that used in [20], a method for testing Java 

desktop apps that is based on RL. The reward function is 

defined by the following equation: 

 

𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
|𝑠𝑡+1−𝑠𝑡|

|𝑠𝑡+1|
   (4) 

 

The reward function, given two states, 𝑠𝑡  and 𝑠𝑡+1 , 

estimates the degree of change from 𝑠𝑡  to 𝑠𝑡+1  by 

comparing and detecting the number of clickables in 𝑠𝑡+1 

that were not present in 𝑠𝑡 , which is described as 

|𝑠𝑡+1 − 𝑠𝑡|. The ratio 
|𝑠𝑡+1−𝑠𝑡|

|𝑠𝑡+1|
, where |𝑠𝑡+1| is the number 

of clickables in 𝑠𝑡+1 , defines the relative change. This 

reward function takes into account the actions that are 

introduced in 𝑠𝑡+1 but are absent in 𝑠𝑡. 

 

As an illustration, given s1  = (2,3,5) and s2 = (5,6), as 

previously defined, 
|(6)|

|(5,6)|
=

1

2
= 0.5 is the reward of the 

transition from 𝑠1 to 𝑠2. In fact, the clickable (6) is not in 

𝑠1, but in 𝑠2, and there are only two clickables in 𝑠2: (5, 6). 

 
4.2. Algorithm 

Algorithm 1 details the WeDeep approach for Deep RL-

based testing. It takes the AUT, the testing time budget, 

and the maximum number of actions per episode as input. 

In fact, we need to turn the testing problem into an RL 

task that is broken up into several episodes. A series of 

actions is referred to as an episode. In other words, each 

episode consists of multiple steps or iterations in which an 

action is conducted. WeDeep outputs a list of failed test 

cases 𝐹. A memory is used to store samples from previous 

iterations, each of which comprises the state, action, and 

related 𝑄 value. WeDeep begins by initializing memory 

𝑀 (line 1) and the failed test set 𝐹 (line 2). Now, testing 

starts and goes on until the time limit is met (lines 3–23). 

WeDeep restarts the web app and navigates to the 

homepage (line 4). Line 5 returns the AUT’s initial state. 

Line 6 initializes test case 𝑇𝐶. In each episode, we limit 

the number of steps that a test case can take (lines 7–23). 

The default setting for the episode length in WeDeep is 

25, but it can be changed. Each test case starts with an 

action in the initial state. 

 

 
 

Epsilon-Greedy is the policy that WeDeep employs (lines 

8–11). It decides based on a predefined threshold 𝜀 in the 

interval [0, 1] to determine whether it will explore new 

actions or exploit its existing knowledge. In fact, it 

chooses the action with the highest 𝑄 value based on the 

DQN (exploitation, Line 11) with a chance of 1 − 𝜀 and a 

random action (exploration, Line 9) with a chance of 𝜀. 

Randomness is required for an agent to discover the 

optimal strategy [21]. We want the WeDeep to explore as 

various states as possible at the start of the testing in order 

to explore new actions more; thus, a high value of 𝜀 

should be used. WeDeep is therefore expected to follow 

the 𝑄  values in order to exploit its knowledge, so a 

smaller value of 𝜀 is expected. By default, WeDeep starts 

with 1 to enable maximum exploration, then decreases its 

value uniformly during the first 30 episodes until a final 

minimum value of 0.2 transforming its behavior towards 

exploitation. 
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WeDeep executes the selected action (line 12). In fact, 

WeDeep does on-the-fly testing by executing the 

appropriate action in the current state of AUT. Following 

the execution of the action, WeDeep monitors the 

browser’s status so that failures can be automatically 

captured (lines 13-15). If a failure is found (line 13), the 

test case is added to the set of failed tests (line 14). 

WeDeep puts an end to the episode and begins a new test 

case (line 15). It is noteworthy that future iterations of 

WeDeep will avoid performing the actions that resulted in 

failures, as this will allow WeDeep to avoid finding 

failures discovered previously. 

WeDeep retrieves the new state (line 16) and computes 

the reward (line 17) using equation (4) based on 𝑠𝑡, 𝑠𝑡+1 

when the action has been performed without failure. 

WeDeep uses equation (3) to calculate the 𝑄  value of 

action 𝑎𝑡  in 𝑠𝑡  with parameters 𝑠𝑡 , 𝑠𝑡+1 , 𝑎𝑡 , and 𝑟𝑡  (line 

18). The discount factor, 𝛾, balances how important the 

immediate reward is compared to future actions, and a 

number of 0.9 maximizes the reward earned over the 

whole episode, not just the immediate reward. 

WeDeep employs a set of random training samples, 

including both the current sample and historical samples 

(line 19), to train the neural network (line 20). Each 

sample takes (𝑠𝑡 , 𝑎𝑡) as input and has 𝑄(𝑠𝑡 , 𝑎𝑡) as output. 

The current transition is saved in memory 𝑀, which stores 

historical samples from previous iterations (line 21). The 

action is added to the current test case (line 22). The prior 

state is then updated to continue testing (line 23). 

 

5. Evaluation 

In this section, we describe empirical evaluation to assess 

the effectiveness of our Deep RL approach for web app 

testing. We specifically aim to find answers to the 

following research questions: 

• RQ1: How does WeDeep compare with state-of-

the-art web testing approaches in terms of code 

coverage? (Code Coverage) 

• RQ2: How does WeDeep compare with state-of-

the-art web testing approaches in terms of fault 

detection? (Fault Detection) 
 

5.1. Setup 

WeDeep was implemented in Python using WebExplor [7] 

to assess its effectiveness. WebExplor supports the RL 

approach. We changed the RL strategy by replacing it 

with our Deep RL algorithm. To interact with the web app, 

Selenium [22] was utilized. The DQN was built and 

executed using Keras [23]. DQN uses a 3-layer fully 

connected neural network, and Adam to optimize the 

model with a learning rate of 0.001. Two state-of-the-art 

strategies were chosen for a comparison study. These 

include WebExplor [7] and DIG [6]. It is worth noting that 

QExplore [18] focuses on constructing behavioral models 

and uses tabular RL as a foundation. Our research focuses 

on testing using Deep RL, which has never been done 

previously. Despite having some similarities with 

WebExplor, QExplor is not a test case generator. So, it is 

not possible to compare WeDeep directly to QExplore. 

Extending our Deep RL technique to develop behavioral 

models for web apps and comparing its effectiveness with 

that of QExplore is an interesting piece of future work that 

can be done. 

Seven open-source web apps were chosen for our 

evaluation. These web apps belong to multiple categories 

and serve various functions. Attendance [24] is a web app 

for tracking student attendance. Patient Record [25] is a 

web app that allows you to manage patient records. Bus 

Booking [26] is a web app for making bus reservations. 

Addressbook [27] is a web app for managing addresses 

and phone numbers. Timeclock [28] is a web app for 

managing timeclocks. Claroline [14] is a web app for 

managing collaborative e-learning. DimeShift [29] is an 

expense tracking web app. 

Code coverage was employed to assess testing quality 

because it has been found to be a good predictor of test 

suite quality [30]. Code coverage is a testing metric that 

calculates the percentage of code lines that are 

successfully executed during testing. Similar to [6], [7], 

each web app was instrumented to acquire code coverage. 

We insert mutations into web apps to simulate faults and 

test each approach's ability to recognize the mutation in 

order to determine how well it can detect faults. Mutation 

analysis is a technique in which faults (mutants) are 

introduced into an app to evaluate the effectiveness of its 

test suite [31]. It has proven to be an excellent way for 

evaluating the test suites of the apps [31]. The usefulness 

of mutation analysis for empirical evaluations in software 

testing has been demonstrated in numerous studies [32], 

[33]. 

Using mutant generators [34], [35], we generated 10 

faulty versions of each web app at random. We also 

manually checked if faulty versions of the apps would 

throw an exception because of the seeded faults. Similar 

to [6], [7], we studied the ability to detect faults by 

keeping track of the number of exceptions and errors that 

the browser reported during tests. Similar to previous 

research [6], [7], we state that a fault is detected if an 

exception is generated, and our manual examination 

verifies that the exception is detecting the seeded faults. 

Each approach was tested on each subject web app. We 

gave each strategy the same 90-minute time limit. In 

addition, we repeated each experiment three times and 

calculated the average of all the results to confirm the 

general trend. The experiments were conducted on a PC 

running Windows 10, with a processor of an Intel Core i7-

13700K 3.40 GHz and memory RAM 31,7 GB. 

 

5.2. Results 

In this section, we present the outcomes of our assessment 

and the answers to our research questions. 

 

RQ1: Code Coverage 

Table I displays the average code coverage of three test 

runs on seven open source web apps using three 

approaches: WeDeep, WebExplor, and DIG. For each 

web app, the highest average code coverage over three 

runs is shaded in gray. WeDeep obtains 68.57% code 

coverage on average, which is greater than WebExplorer 

(60.44%) and DIG (51.56%). In other words, when 

compared to WebExplor and DIG, WeDeep resulted in an 

average improvement of 13% and 33%, respectively. 

Furthermore, WeDeep has the highest code coverage in 

all the web apps compared with the other approaches. This 

experiment demonstrates that a Deep RL strategy can 

direct testing toward more effective actions, resulting in 
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higher code coverage. This suggests that the Deep RL 

approach is more valuable than the RL approach for 

testing web apps. 

 

Table I. Code coverage results. 

App WeDeep WebExplor DIG 

Attendance 68.97 59.15 51.68 

Patient Record 78.85 71.34 60.86 

Bus Booking 64.16 54.79 44.96 

Addressbook 70.19 64.35 56.48 

Timeclock 66.71 60.49 52.81 

Claroline 71.10 61.57 51.74 

DimeShift 60.01 51.41 42.43 

Average 68.57 60.44 51.56 

 

Figure 4 depicts the evolution of code coverage for each 

technique over a 90-minute execution time across all 

subject web apps. All approaches increase their code 

coverage almost to the end, but WeDeep comes out on top 

with the highest code coverage across execution duration. 

This demonstrates that our Deep RL method is effective 

in gradually learning a testing strategy that can be utilized 

at a later stage of the testing process. 

 
Fig. 4: The comparison of the evolution of code 

coverage 

 

RQ2: Fault Detection 

The average number of faults detected by the three testing 

approaches in three test runs is shown in Table II. For each 

app, the highest average number of detected faults over 

three runs is shaded in gray. In three test runs, WeDeep 

detected 9.29 faults, WebExplor detected 8.1 faults, and 

DIG detected 7.29 faults on average. Furthermore, 

WeDeep reveals the greatest number of faults in all the 

web apps compared with the other approaches. The ability 

to detect faults is a crucial part of testing. Deep RL 

surpassed RL, suggesting that Deep RL is capable of 

developing and executing test cases to exercise the app’s 

functionalities and assist in fault detection. 

We looked over the testing done using WeDeep and the 

other two approaches, including WebExplor. It is worth 

noting that there are patterns, i.e., a series of actions that 

must be performed in a precise order to enable the 

transition from one state to the next. Because potential 

faults might be identified by tracing these sequences of 

actions, they make testing more difficult. Take the 

Claroline subject as an example. A fault found by 

WeDeep has an execution trace that shows the following 

steps: typing the username, typing the password, clicking 

the login button, clicking on the target course, clicking on 

the announcement link, clicking the add announcement 

button, typing the title, typing the description, and 

clicking the OK button. In another case, WeDeep found a 

fault in DimeShift after the following steps were taken: 

typing the username, typing the password, clicking 

"login," clicking "goals," clicking "create new," typing the 

name, clicking "next," typing the amount, and clicking 

"save." WeDeep found faults with such action sequences 

in other subject web apps as well. Notably, any 

interruption in the process will result in a redirect to 

another page, reducing the efficacy of the testing. Deep 

RL guidance enables WeDeep to efficiently execute these 

sequences of actions in subject web apps. Indeed, we 

discovered that the Deep RL algorithm outperforms the 

RL algorithm when it comes to replicating human 

behaviors in order to generate these sequences of actions 

without being distracted by previously seen states or 

ineffective actions in high dimensional action or state 

space, and in order to learn an effective testing strategy. 

Producing such behaviors is feasible due to the learning 

capabilities of the DQN utilized by the Deep RL algorithm, 

whereas it is more difficult for the RL algorithm, which 

has limited adaptation capabilities, to reproduce the 

correct action sequences. 

 

Table II. Fault detection results. 

App WeDeep WebExplor DIG 

Attendance 9.33 8.67 7.67 

Patient Record 9.67 8.33 7.67 

Bus Booking 9.67 8.67 8.00 

Addressbook 8.67 8.00 7.33 

Timeclock 9.33 7.67 6.67 

Claroline 9.33 8.00 6.33 

DimeShift 9.00 7.33 7.33 

Average 9.29 8.10 7.29 

 

Summary 

WeDeep’s good results in code coverage and fault 

detection are due to the Deep RL approach and its reward 

function, which encourage the execution of actions that 

lead to new states and allow access to the majority of an 

AUT’s functionalities. Therefore, in the presence of 

complex state spaces in web apps (with a large number of 

actions and states) that require the ability to utilize 

knowledge acquired through previous trial and error, the 

learning capabilities of Deep RL are more advantageous 

to web app testing than RL. 

 
6. Conclusions 

Automated web app testing involves simulating user 

actions. Testing web apps is hard because there are so 

many actions and states that could be taken. In this paper, 

we present WeDeep, an approach based on Deep RL for 

web app testing. A Deep Q-network agent is used in this 

strategy to test the web app systematically through trial 

and error, optimizing action selection and obtaining the 

best action to achieve a greater reward for discovering the 

functionalities. The empirical evaluation yielded 

encouraging results, as WeDeep achieved greater code 

coverage than state-of-the-art techniques across seven 
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subject web apps and also performed well in detecting 

faults. 

This is the first study to successfully integrate web app 

testing and Deep RL. However, it does not encompass the 

entire field. There is a significant amount of space for 

additional work in the future. We intend to test our 

approach with different parameters (for example, 

different discount factors and Epsilons) across a larger set 

of web apps, extend the state space (for example, by 

adding more information to Deep Q-network), and 

conduct a detailed investigation into the reward function 

(for example, by taking action frequency into account). 
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