
Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

Web Application Testing Using Deep

Reinforcement Learning

Mohammadreza Abbasnezhad1, Amir Jahangard Rafsanjani1*, Amin Milani Fard2

1Department of Computer Engineering, Yazd University, Yazd, Iran.
2Department of Computer Science, New York Institute of Technology, Vancouver, BC, Canada.

abbasnezhad.m.r@stu.yazd.ac.ir

jahangard@yazd.ac.ir

amilanif@nyit.edu

*Corresponding author

Received: 02/05/2023, Revised;19/08/2023, Accepted: 28/10/2023.

Abstract

Web applications (apps) are integral to our daily lives. Before users can use web apps, testing must be conducted to ensure

their reliability. There are various approaches for testing web apps. However, they still require improvement. In fact, they

struggle to achieve high coverage of web app functionalities. On the one hand, web apps typically have an extensive state

space, which makes testing all states inefficient and time-consuming. On the other hand, specific sequences of actions are

required to access certain functionalities. Therefore, the optimal testing strategy extremely depends on the app’s features.

Reinforcement Learning (RL) is a machine learning technique that learns the optimal strategy to solve a task through

trial-and-error rather than explicit supervision, guided by positive or negative reward. Deep RL extends RL, and exploits

the learning capabilities of neural networks. These features make Deep RL suitable for testing complex state spaces, such

as those found in web apps. However, modern approaches support fundamental RL. We have proposed WeDeep, a Deep

RL testing approach for web apps. We evaluated our method using seven open-source web apps. Results from experiments

prove it has higher code coverage and fault detection than other existing methods.

Keywords

Deep reinforcement learning; Automated testing; Test generation; Web application.

1. Introduction

Web technologies have advanced and innovated at a

remarkable rate over the past decades. Web applications

(apps) are currently as effective as desktop apps. Besides

being competitively convenient, they do not require

complicated installation. According to the most recent

survey by Internet World Stats [1], nearly 68 percent of

the world’s population uses web apps. With the

widespread adoption of web apps, there is a greater need

to improve their reliability. This is especially true as more

users rely on web apps to perform daily tasks and as more

companies rely on these apps to drive their enterprises.

There are also many complexities associated with web

apps, such as sophisticated business logic implemented in

multiple languages on the client and server sides. Since

the majority of their success depends on user feedback, it

is essential for them to be reliable while they are being

used. Consequently, an effective testing phase is essential

for reducing the likelihood of web app failures.

A web app is composed of one or more HTML pages,

which serve as the user interface (UI). A Document

Object Model (DOM) [2] represents each HTML page

during runtime. DOM specifies the logical structure of

web pages and the means by which they are accessed and

altered. DOM can be changed dynamically by its API

which generates various states for web apps. Each DOM

or state contains various UI elements, such as buttons,

links, and so on. A web app is event-based, which implies

that its behavior is determined by user actions such as

button clicks. Because of the event-based nature of web

apps, numerous approaches [3]–[7] have focused on auto-

generating events to test web apps.

Regardless of the testing strategy, the objective is to

provide events that disclose states associated with web

app functionalities. However, significant obstacles exist

in this area. The state explosion challenge [8] refers to the

fact that web apps typically comprise a huge state space

because of a large number of elements and potential

events. For web apps, testing the vast space of all possible

events, states, and their transitions takes a lot of effort and

is challenging to scale. As a result, automated testing

methodologies must only test the sequences of events and

states that are important to the web app’s functionalities.

Notably, certain web app functionalities can only be

accessed through a specific sequence of events.

There are various techniques for web app automated

testing that attempt to maximize code coverage and fault

detection during testing. Using random events, random

testing strategies [3] stimulate the Application Under Test

(AUT). However, when dealing with difficult transitions,

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

220

random testing without direction may get stuck. model-

based solutions [4]–[6] create a behavioral model of the

AUT and then utilize it to test the web app and produce

events. In this instance, high-quality models are crucial

for achieving a successful testing outcome. Nevertheless,

the constructed behavioral model may only encompass a

portion of the web app’s functionalities, thereby limiting

the effectiveness of the generated test cases.

Recent research on Reinforcement Learning (RL) [9] has

shown that it can learn a policy to test web apps [7]. RL is

an approach in machine learning that does not require a

labeled training set as input because the learning process

is guided by the positive or negative reward encountered

during task execution. As a result, it represents a method

for dynamically developing an appropriate testing

approach based on previous successful or unsuccessful

experiences. Even though RL has been used to address the

issue of web testing [7], only the most fundamental form

of RL—namely, tabular RL—has been used to test web

apps so far. In tabular RL, the state-action values are

saved in a table. Deep neural networks replaced tabular

techniques with Deep learning approaches, in which the

action-value function is learned from a neural network’s

previous positive and negative experiences. Deep RL has

proven significantly superior to tabular RL [10], [11]

when the state space is large (e.g., many events and states

within a web app). In this regard, we argue that the state

space of web apps is an excellent candidate for the

effective use of Deep RL rather than tabular RL for testing

reasons.

This article introduces the first Deep RL approach for

automated web app black-box testing, named WeDeep

(Web Application Testing Using Deep Reinforcement

Learning). WeDeep employs a Deep neural network to

discover the optimal testing strategy by analyzing past

attempts. It achieves high scalability and the ability to

manage complex web app functionalities because of this

Deep neural network. WeDeep applied to a benchmark of

seven web apps. The benchmark compared WeDeep’s

performance to that of state-of-the-art testing approaches

for web apps, such as WebExplor [7] and DIG [6]. The

experimental results confirmed the hypothesis that Deep

RL outperforms tabular RL in testing the state space of

web apps, with WeDeep detecting the most of the faults

and achieving the highest code coverage.

The contributions of this paper are summarized as follows:

• We propose WeDeep, the first testing approach

based on Deep RL.

• We present an empirical evaluation of the

proposed approach. Results show that our

approach outperforms existing ones in terms of

both code coverage and fault detection.

The remainder of this paper is organized as follows:

Section 2 gives a motivation example and an introduction

to Deep RL. Section 3 surveys related work. Section 4

describes our Deep RL based testing approach. Section 5

presents an empirical evaluation of our proposed

approach on seven web apps. Section 6 concludes the

paper and outlines future work.

2. Motivation and Background

In this section, we describe our motivation for our

research, followed by some background on Deep RL.

2.1. Motivating

Testing web apps is one of the primary activities that

contributes significantly to web app quality [12], [13]. We

view the automatic testing of web app as a problem

involving the generation of action sequences to attain

various web app states. To put it another way, carrying out

tasks in the appropriate order can assist in detecting

possible faults. To that end, it will be necessary to devise

an efficient testing method to enable us to visit a wider

variety of states within the available time constraint.

Some states can only be reached via specific action

sequences; thus, the approach should be able to

effectively create those as well as cover a wide variety of

states.

For example, Claroline [14] is one of our subject web apps.

It is a collaborative learning environment that enables

academic institutions or teachers to design and manage

online courses. To create an announcement for their

students in the Claroline web app, a teacher should

perform the following actions: typing username, typing

password, clicking on the login button, clicking on the

target course, clicking on the announcement link, clicking

on the add announcement button, typing the title, typing

the description, and clicking on the OK button. If there is

a fault in the creation of an announcement, this path will

lead to its discovery. Nevertheless, web apps typically

have a large state space due to the large number of

elements and possible actions [8], making it difficult to

generate valid action sequences efficiently. Any

interruption during the action sequence would prevent the

objective state from being reached. In the described

sequence, if in the final stage another element, such as the

course homepage, is clicked instead of the OK button,

neither an announcement nor the potential fault will be

generated.

We observe that if an agent can imitate human behavior

with the app, it can generate valid action sequences

efficiently. For instance, if the agent clicks on the OK

button after filling out the title and description fields, an

announcement will be generated rather than the course

homepage. Motivated by this observation, we design a

Deep RL agent, which has been shown to be vastly

superior to tabular RL [10], [11], when the state space is

large (e.g., many actions and states within a web app). Our

Deep RL agent generates actions for which the action

sequence generated is consistent with human behavior. In

fact, action sequences are generated by the Deep RL agent

to effectively attain beneficial states.

2.2. Deep RL in brief

A model-free RL technique called Q-learning [15] aims to

learn a policy for any Markov decision process by

identifying the best possible policy, 𝜋, to maximize the

expected cumulative reward for a series of actions. Q-

learning is based on trial-and-error learning, in which an

agent interacts with the environment and assigns 𝑄 values,

which are approximated values, to each state-action pair.

As depicted in Fig. 1, the agent interacts iteratively with

the environment. Assuming 𝑆 and 𝐴 are the sets of all

states and actions, at each iteration 𝑡, the agent selects and

executes an action 𝑎𝑡 ∈ 𝐴 based on the current state 𝑠𝑡 ∈
𝑆 . 𝑠𝑡 and 𝑎𝑡 represents the state and action at time 𝑡 ,

respectively. After performing the action, the agent can

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

221

observe a new state 𝑠𝑡+1 ∈ 𝑆. In the meantime, an instant

reward 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡) is received. This is the immediate

reward for doing action 𝑎𝑡 in state 𝑠𝑡. The agent will then

use the Bellman equation [16] to update the 𝑄 value, as

follows:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∗ (𝑟𝑡 + 𝛾 ∗
max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)) (1)

𝛼 is a learning rate between 0 and 1 and 𝛾 is a discount

factor between 0 and 1 in this equation. After being

learned, these 𝑄 values can determine the optimal

behavior in each state by selecting the actions 𝑎𝑡 =
arg max

𝑎𝑡+1

𝑄(𝑠𝑡 , 𝑎𝑡+1).

Fig. 1: Deep RL overview

Deep Q-Networks (DQN) are used to scale traditional Q-

learning to larger state and action spaces [10], [11].

𝑄(𝑠𝑡 , 𝑎𝑡) are stored and visited in a Q-table for traditional

Q-learning. It can only manage state and action spaces

with low dimensions. As shown in Fig. 1, DQN is a multi-

layered neural network that outputs 𝑄 values for each

action 𝑎𝑡 in a given state 𝑠𝑡, i.e., 𝑄(𝑠𝑡 , 𝑎𝑡). DQN can scale

more complicated state and action spaces because a neural

network can input and output high-dimensional state and

action spaces. In contrast to a Q-table, a neural network

can generalize 𝑄 values to previously unobserved states.

It employs the following loss function [10], [11] to modify

the neural network in order to reduce the error:

𝑙𝑜𝑠𝑠 = (𝑟𝑡 + 𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡))
2

 (2)

In other words, the neural network is trained to predict the

value of 𝑄 as follows, given the input (𝑠𝑡 , 𝑎𝑡):

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) (3)

In a training sample, therefore, the input is (𝑠𝑡 , 𝑎𝑡) and the

output is the corresponding 𝑄 value, which can be

calculated as 𝑟𝑡 + 𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1).

3. Related Work

Various techniques have been suggested for web testing.

In the following, we will provide a concise discussion of

the most important solutions and their limitations, which

will highlight the need for an innovative and effective

approach to web testing.

Random testing techniques, such as Crawljax [3] by

Mesbah et al., generate and send random events to a web

app. Although this technique is straightforward, there is

no guidance to ensure that the testing is efficient. Testing

therefore comprises numerous inefficient or repetitive

actions and has a low likelihood of exposing difficult-to-

reach functionalities. Some states are more accessible

than others, so they will be executed more frequently

under random strategy, whereas some states that are

difficult to reach may not be executed at all.

The model-based method is a major paradigm that may be

used to achieve automatic web testing [4]–[6]. In order to

detect faults in web apps, this method creates models to

characterize their behaviors in advance, and then produces

test cases from these models. The model is a directed

graph in its most basic form, with nodes representing

various DOM states and edges representing the event-

driven transitions connecting those states.

ATUSA [4] by Mesbah et al. finds the shortest path from

the main page to each of the nodes that has no outgoing

edges. A test case is created in this manner. Biagiola et al.

created SubWeb [5], a search-based approach to web

testing. SubWeb samples the input space iteratively,

selecting the most suitable candidates for test cases and

evolving them using genetic search operators to generate

new test cases. However, defining an effective fitness

function requires a manual analysis of behavioral model

data. This is a tedious and lengthy process for testers. In

fact, this kind of information relies on the business logic

of the web app, so it cannot be made fully automatic. In

addition, the evaluation of the fitness function is

expensive because a large number of candidates must be

generated and executed in the browser prior to convergent

on an adequate set of tests.

Biagiola et al.'s DIG [6] is a diversity-based method for

generating web tests that draws inspiration from adaptive

random testing [17]. DIG prioritizes candidate tests by

selecting those that are most different from those that have

already been generated. DIG can evaluate a large number

of candidate test cases without executing them in the

browser, resulting in quicker test generation than SubWeb.

DIG, unlike SubWeb, is automated and does not require

any manual effort to develop test cases.

The completeness of the derived behavioral model has a

significant impact on the effectiveness of the generated

test cases in model-based testing. It's likely that the model

will only include some web app functionalities while

excluding others from testing. In addition, web apps

frequently have dynamic content updates (through

languages like JavaScript and the DOM API), which are

difficult for behavioral models to capture. It is also

necessary to have expert knowledge of the subject in order

to construct high-quality models [6]. In order to create a

behavioral model, it is common practice to randomly

traverse the UI of a web app. However, this technique is

redundant and limited when considering web apps.

Model-based methods tend to make test cases that cannot

be run on web apps and are not useful [6].

Similarly, research has investigated the use of RL for web

app testing. WebExplor [7] by Zheng et al. utilizes RL,

allowing it to anticipate and generate test cases

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

222

incrementally while interacting with a web app.

WebExplor employs Q-learning [15], a model-free RL

method, based on curiosity reward to accomplish testing.

Similarly, QExplore [18] is another existing work that is

most relevant to both the RL and web domain, since it

uses RL to develop behavioral models for web apps while

interacting with them. Both WebExplor and QExplore, in

contrast to our study, are based on the most basic type of

RL, tabular RL. In contrast, WeDeep learns the action-

value function based on Deep RL during its interaction

with the AUT. To the best of our knowledge, WeDeep is

the first Deep RL-based approach that conducts testing for

web apps and outperforms state-of-the-art methods in

terms of effectiveness.

4. Proposed Approach

This section covers WeDeep (Web Application Testing

Using Deep Reinforcement Learning), our proposed Deep

RL-based approach to testing web apps. In Fig. 2, we can

see the main building blocks of the proposed approach,

which are Browser, DOM Analyzer, DQN, Action

Selector, Observer, Calculator, and Memory.

Fig. 2: Proposed approach Overview

It is the responsibility of Browser to provide a common

interface for communicating with the web app. It has

access to runtime DOMs and the JavaScript engine.

Additionally, Browser executes the actions in web app

states. DOM Analyzer parses the DOM tree and extracts

the state and actions associated with it. The current state

and actions are converted into an input by DOM Analyzer,

which is subsequently sent into the DQN. DQN receives

the web app’s state and its actions. DQN uses a model of

a neural network to figure out 𝑄 values for actions which

it then sends to Action Selector. The next action to execute

is selected by Action Selector based on an Epsilon-Greedy

policy [9]. The browser executes the selected action. The

web app enters a new state. Observer is responsible for

monitoring the status of Browser given that failures can

be automatically caught. If a failure occurred, Observer

would append the sequence of actions to the failed test set

for the tester to examine. Using equation (3), Calculator

computes the transition reward and obtains the 𝑄 value.

The transition is stored in Memory along with the state,

action, and 𝑄 value. DQN learns from a sampling batch

of transitions in Memory to update its weights. DQN

would learn poorly if it merely used sequential samples of

experience from the environment because of their

correlation [10], [11]. This correlation is broken by

sampling Memory at random.

4.1. Problem Formulation

To use Deep RL, we must first convert the web app testing

problem to the conventional mathematical formalization

of RL. The web app testing problem can be formalized

formally as a Markov decision process, which can be

demonstrated by a 4-tuple, 〈𝑆, 𝐴, 𝑃, 𝑅〉 . These are

described below.

𝑺: States

Our approach is black-box because it does not access the

AUT source code. It only uses the UI of AUT. WeDeep

extracts the DOM from the web app’s current UI.

WeDeep analyzes the DOM to find clickable elements in

the current state. A DOM element is clickable if it has a

click event listener attached to it, or if it is clickable in

general, such as element 〈𝑎〉. State 𝑠𝑡 is represented by

(𝑐1, 𝑐2, … , 𝑐𝑛), where 𝑐𝑖 are the clickable elements in 𝑠𝑡.

Each 𝑐𝑖 is an index that indicates the element’s position in

the DOM tree’s pre-order traversal.

Fig. 3 illustrates the partial DOM trees of two pages,

DOM 1 and DOM 2, as an example. They are both made

up of elements 〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑝〉 and〈𝑎〉. The elements

that can be clicked (only elements 〈𝑎〉) are highlighted.

DOM 1’s pre-order traversal is

(〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑎〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑝〉), and DOM 2’s is

(〈𝑏𝑜𝑑𝑦〉, 〈𝑑𝑖𝑣〉, 〈𝑝〉, 〈𝑝〉, 〈𝑑𝑖𝑣〉, 〈𝑎〉, 〈𝑎〉) . For simplicity,

we replace elements that can be clicked with 1 and those

that cannot with 0. They are transformed into

(0, 0, 1, 1, 0, 1, 0) and (0, 0, 0, 0, 0, 1, 1) . To acquire 𝑠1

and 𝑠2, the respective states of DOM 1 and DOM 2, we

must take into account the positions of clickable elements,

i.e., the positions of number 1. As a result, s1 = (2,3,5)

and s2 = (5,6).

𝑨: Actions

Clickable elements indicate actions. In other words,

clickables and click events in web apps are formulated as

actions in the Markov decision process. Actions are

represented by the index of the clickables in the relevant

state, which is similar to states. In 𝑠1, for example, there

are three actions marked by 𝐴1 = (2, 3, 5). In the same

way, 𝐴2 = (5, 6) shows that 𝑠2 has two actions. In this

paper, we don’t make a difference between actions and

events, because they are the same. In web apps, clickables

suffice to complete the majority of tasks. We focus on

producing action sequences rather than input values, as in

previous work [6], [7]. When acting on elements that

require input data, random values will be generated in

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

223

accordance with W3C guidelines [19]. For instance, when

interacting with HTML input elements such as email or

text that require user input data, a random email or text is

generated for them. WeDeep allows you to manually enter

data for certain inputs (e.g., username and password).

Fig. 3: Partial DOM trees

𝑷: Transition Function

The transition function indicates the state the web app will

enter once an event occurs. We have no control over it;

the AUT decides what it is.

𝑹: Reward

When WeDeep executes an event, it receives a reward.

We present a mechanism for determining the reward that

complements our testing approach. The reward function

gives a bigger reward to actions that change the state a lot.

This is a heuristic way to understand which actions lead

to new functionalities. The intuition is to provide greater

rewards for actions that can result in multiple new actions.

In fact, a state with more new clickables is more likely to

result in additional states and functionalities. It is

important to note that our thinking about reward function

is similar to that used in [20], a method for testing Java

desktop apps that is based on RL. The reward function is

defined by the following equation:

𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
|𝑠𝑡+1−𝑠𝑡|

|𝑠𝑡+1|
 (4)

The reward function, given two states, 𝑠𝑡 and 𝑠𝑡+1 ,

estimates the degree of change from 𝑠𝑡 to 𝑠𝑡+1 by

comparing and detecting the number of clickables in 𝑠𝑡+1

that were not present in 𝑠𝑡 , which is described as

|𝑠𝑡+1 − 𝑠𝑡|. The ratio
|𝑠𝑡+1−𝑠𝑡|

|𝑠𝑡+1|
, where |𝑠𝑡+1| is the number

of clickables in 𝑠𝑡+1 , defines the relative change. This

reward function takes into account the actions that are

introduced in 𝑠𝑡+1 but are absent in 𝑠𝑡.

As an illustration, given s1 = (2,3,5) and s2 = (5,6), as

previously defined,
|(6)|

|(5,6)|
=

1

2
= 0.5 is the reward of the

transition from 𝑠1 to 𝑠2. In fact, the clickable (6) is not in

𝑠1, but in 𝑠2, and there are only two clickables in 𝑠2: (5, 6).

4.2. Algorithm

Algorithm 1 details the WeDeep approach for Deep RL-

based testing. It takes the AUT, the testing time budget,

and the maximum number of actions per episode as input.

In fact, we need to turn the testing problem into an RL

task that is broken up into several episodes. A series of

actions is referred to as an episode. In other words, each

episode consists of multiple steps or iterations in which an

action is conducted. WeDeep outputs a list of failed test

cases 𝐹. A memory is used to store samples from previous

iterations, each of which comprises the state, action, and

related 𝑄 value. WeDeep begins by initializing memory

𝑀 (line 1) and the failed test set 𝐹 (line 2). Now, testing

starts and goes on until the time limit is met (lines 3–23).

WeDeep restarts the web app and navigates to the

homepage (line 4). Line 5 returns the AUT’s initial state.

Line 6 initializes test case 𝑇𝐶. In each episode, we limit

the number of steps that a test case can take (lines 7–23).

The default setting for the episode length in WeDeep is

25, but it can be changed. Each test case starts with an

action in the initial state.

Epsilon-Greedy is the policy that WeDeep employs (lines

8–11). It decides based on a predefined threshold 𝜀 in the

interval [0, 1] to determine whether it will explore new

actions or exploit its existing knowledge. In fact, it

chooses the action with the highest 𝑄 value based on the

DQN (exploitation, Line 11) with a chance of 1 − 𝜀 and a

random action (exploration, Line 9) with a chance of 𝜀.

Randomness is required for an agent to discover the

optimal strategy [21]. We want the WeDeep to explore as

various states as possible at the start of the testing in order

to explore new actions more; thus, a high value of 𝜀

should be used. WeDeep is therefore expected to follow

the 𝑄 values in order to exploit its knowledge, so a

smaller value of 𝜀 is expected. By default, WeDeep starts

with 1 to enable maximum exploration, then decreases its

value uniformly during the first 30 episodes until a final

minimum value of 0.2 transforming its behavior towards

exploitation.

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

224

WeDeep executes the selected action (line 12). In fact,

WeDeep does on-the-fly testing by executing the

appropriate action in the current state of AUT. Following

the execution of the action, WeDeep monitors the

browser’s status so that failures can be automatically

captured (lines 13-15). If a failure is found (line 13), the

test case is added to the set of failed tests (line 14).

WeDeep puts an end to the episode and begins a new test

case (line 15). It is noteworthy that future iterations of

WeDeep will avoid performing the actions that resulted in

failures, as this will allow WeDeep to avoid finding

failures discovered previously.

WeDeep retrieves the new state (line 16) and computes

the reward (line 17) using equation (4) based on 𝑠𝑡, 𝑠𝑡+1

when the action has been performed without failure.

WeDeep uses equation (3) to calculate the 𝑄 value of

action 𝑎𝑡 in 𝑠𝑡 with parameters 𝑠𝑡 , 𝑠𝑡+1 , 𝑎𝑡 , and 𝑟𝑡 (line

18). The discount factor, 𝛾, balances how important the

immediate reward is compared to future actions, and a

number of 0.9 maximizes the reward earned over the

whole episode, not just the immediate reward.

WeDeep employs a set of random training samples,

including both the current sample and historical samples

(line 19), to train the neural network (line 20). Each

sample takes (𝑠𝑡 , 𝑎𝑡) as input and has 𝑄(𝑠𝑡 , 𝑎𝑡) as output.

The current transition is saved in memory 𝑀, which stores

historical samples from previous iterations (line 21). The

action is added to the current test case (line 22). The prior

state is then updated to continue testing (line 23).

5. Evaluation

In this section, we describe empirical evaluation to assess

the effectiveness of our Deep RL approach for web app

testing. We specifically aim to find answers to the

following research questions:

• RQ1: How does WeDeep compare with state-of-

the-art web testing approaches in terms of code

coverage? (Code Coverage)

• RQ2: How does WeDeep compare with state-of-

the-art web testing approaches in terms of fault

detection? (Fault Detection)

5.1. Setup

WeDeep was implemented in Python using WebExplor [7]

to assess its effectiveness. WebExplor supports the RL

approach. We changed the RL strategy by replacing it

with our Deep RL algorithm. To interact with the web app,

Selenium [22] was utilized. The DQN was built and

executed using Keras [23]. DQN uses a 3-layer fully

connected neural network, and Adam to optimize the

model with a learning rate of 0.001. Two state-of-the-art

strategies were chosen for a comparison study. These

include WebExplor [7] and DIG [6]. It is worth noting that

QExplore [18] focuses on constructing behavioral models

and uses tabular RL as a foundation. Our research focuses

on testing using Deep RL, which has never been done

previously. Despite having some similarities with

WebExplor, QExplor is not a test case generator. So, it is

not possible to compare WeDeep directly to QExplore.

Extending our Deep RL technique to develop behavioral

models for web apps and comparing its effectiveness with

that of QExplore is an interesting piece of future work that

can be done.

Seven open-source web apps were chosen for our

evaluation. These web apps belong to multiple categories

and serve various functions. Attendance [24] is a web app

for tracking student attendance. Patient Record [25] is a

web app that allows you to manage patient records. Bus

Booking [26] is a web app for making bus reservations.

Addressbook [27] is a web app for managing addresses

and phone numbers. Timeclock [28] is a web app for

managing timeclocks. Claroline [14] is a web app for

managing collaborative e-learning. DimeShift [29] is an

expense tracking web app.

Code coverage was employed to assess testing quality

because it has been found to be a good predictor of test

suite quality [30]. Code coverage is a testing metric that

calculates the percentage of code lines that are

successfully executed during testing. Similar to [6], [7],

each web app was instrumented to acquire code coverage.

We insert mutations into web apps to simulate faults and

test each approach's ability to recognize the mutation in

order to determine how well it can detect faults. Mutation

analysis is a technique in which faults (mutants) are

introduced into an app to evaluate the effectiveness of its

test suite [31]. It has proven to be an excellent way for

evaluating the test suites of the apps [31]. The usefulness

of mutation analysis for empirical evaluations in software

testing has been demonstrated in numerous studies [32],

[33].

Using mutant generators [34], [35], we generated 10

faulty versions of each web app at random. We also

manually checked if faulty versions of the apps would

throw an exception because of the seeded faults. Similar

to [6], [7], we studied the ability to detect faults by

keeping track of the number of exceptions and errors that

the browser reported during tests. Similar to previous

research [6], [7], we state that a fault is detected if an

exception is generated, and our manual examination

verifies that the exception is detecting the seeded faults.

Each approach was tested on each subject web app. We

gave each strategy the same 90-minute time limit. In

addition, we repeated each experiment three times and

calculated the average of all the results to confirm the

general trend. The experiments were conducted on a PC

running Windows 10, with a processor of an Intel Core i7-

13700K 3.40 GHz and memory RAM 31,7 GB.

5.2. Results

In this section, we present the outcomes of our assessment

and the answers to our research questions.

RQ1: Code Coverage

Table I displays the average code coverage of three test

runs on seven open source web apps using three

approaches: WeDeep, WebExplor, and DIG. For each

web app, the highest average code coverage over three

runs is shaded in gray. WeDeep obtains 68.57% code

coverage on average, which is greater than WebExplorer

(60.44%) and DIG (51.56%). In other words, when

compared to WebExplor and DIG, WeDeep resulted in an

average improvement of 13% and 33%, respectively.

Furthermore, WeDeep has the highest code coverage in

all the web apps compared with the other approaches. This

experiment demonstrates that a Deep RL strategy can

direct testing toward more effective actions, resulting in

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

225

higher code coverage. This suggests that the Deep RL

approach is more valuable than the RL approach for

testing web apps.

Table I. Code coverage results.

App WeDeep WebExplor DIG

Attendance 68.97 59.15 51.68

Patient Record 78.85 71.34 60.86

Bus Booking 64.16 54.79 44.96

Addressbook 70.19 64.35 56.48

Timeclock 66.71 60.49 52.81

Claroline 71.10 61.57 51.74

DimeShift 60.01 51.41 42.43

Average 68.57 60.44 51.56

Figure 4 depicts the evolution of code coverage for each

technique over a 90-minute execution time across all

subject web apps. All approaches increase their code

coverage almost to the end, but WeDeep comes out on top

with the highest code coverage across execution duration.

This demonstrates that our Deep RL method is effective

in gradually learning a testing strategy that can be utilized

at a later stage of the testing process.

Fig. 4: The comparison of the evolution of code

coverage

RQ2: Fault Detection

The average number of faults detected by the three testing

approaches in three test runs is shown in Table II. For each

app, the highest average number of detected faults over

three runs is shaded in gray. In three test runs, WeDeep

detected 9.29 faults, WebExplor detected 8.1 faults, and

DIG detected 7.29 faults on average. Furthermore,

WeDeep reveals the greatest number of faults in all the

web apps compared with the other approaches. The ability

to detect faults is a crucial part of testing. Deep RL

surpassed RL, suggesting that Deep RL is capable of

developing and executing test cases to exercise the app’s

functionalities and assist in fault detection.

We looked over the testing done using WeDeep and the

other two approaches, including WebExplor. It is worth

noting that there are patterns, i.e., a series of actions that

must be performed in a precise order to enable the

transition from one state to the next. Because potential

faults might be identified by tracing these sequences of

actions, they make testing more difficult. Take the

Claroline subject as an example. A fault found by

WeDeep has an execution trace that shows the following

steps: typing the username, typing the password, clicking

the login button, clicking on the target course, clicking on

the announcement link, clicking the add announcement

button, typing the title, typing the description, and

clicking the OK button. In another case, WeDeep found a

fault in DimeShift after the following steps were taken:

typing the username, typing the password, clicking

"login," clicking "goals," clicking "create new," typing the

name, clicking "next," typing the amount, and clicking

"save." WeDeep found faults with such action sequences

in other subject web apps as well. Notably, any

interruption in the process will result in a redirect to

another page, reducing the efficacy of the testing. Deep

RL guidance enables WeDeep to efficiently execute these

sequences of actions in subject web apps. Indeed, we

discovered that the Deep RL algorithm outperforms the

RL algorithm when it comes to replicating human

behaviors in order to generate these sequences of actions

without being distracted by previously seen states or

ineffective actions in high dimensional action or state

space, and in order to learn an effective testing strategy.

Producing such behaviors is feasible due to the learning

capabilities of the DQN utilized by the Deep RL algorithm,

whereas it is more difficult for the RL algorithm, which

has limited adaptation capabilities, to reproduce the

correct action sequences.

Table II. Fault detection results.

App WeDeep WebExplor DIG

Attendance 9.33 8.67 7.67

Patient Record 9.67 8.33 7.67

Bus Booking 9.67 8.67 8.00

Addressbook 8.67 8.00 7.33

Timeclock 9.33 7.67 6.67

Claroline 9.33 8.00 6.33

DimeShift 9.00 7.33 7.33

Average 9.29 8.10 7.29

Summary

WeDeep’s good results in code coverage and fault

detection are due to the Deep RL approach and its reward

function, which encourage the execution of actions that

lead to new states and allow access to the majority of an

AUT’s functionalities. Therefore, in the presence of

complex state spaces in web apps (with a large number of

actions and states) that require the ability to utilize

knowledge acquired through previous trial and error, the

learning capabilities of Deep RL are more advantageous

to web app testing than RL.

6. Conclusions

Automated web app testing involves simulating user

actions. Testing web apps is hard because there are so

many actions and states that could be taken. In this paper,

we present WeDeep, an approach based on Deep RL for

web app testing. A Deep Q-network agent is used in this

strategy to test the web app systematically through trial

and error, optimizing action selection and obtaining the

best action to achieve a greater reward for discovering the

functionalities. The empirical evaluation yielded

encouraging results, as WeDeep achieved greater code

coverage than state-of-the-art techniques across seven

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

226

subject web apps and also performed well in detecting

faults.

This is the first study to successfully integrate web app

testing and Deep RL. However, it does not encompass the

entire field. There is a significant amount of space for

additional work in the future. We intend to test our

approach with different parameters (for example,

different discount factors and Epsilons) across a larger set

of web apps, extend the state space (for example, by

adding more information to Deep Q-network), and

conduct a detailed investigation into the reward function

(for example, by taking action frequency into account).

7. References

[1] “World Internet Users Statistics and 2023 World

Population Stats.”

https://www.internetworldstats.com/stats.htm

(accessed Feb. 03, 2023).

[2] “What is the Document Object Model?”

https://www.w3.org/TR/WD-

DOM/introduction.html (accessed Jan. 05, 2023).

[3] A. Mesbah, A. van Deursen, and S. Lenselink,

“Crawling Ajax-Based Web Applications through

Dynamic Analysis of User Interface State

Changes,” ACM Trans. Web, vol. 6, no. 1, Mar.

2012, doi: 10.1145/2109205.2109208.

[4] A. Mesbah, A. van Deursen, and D. Roest,

“Invariant-Based Automatic Testing of Modern

Web Applications,” IEEE Trans. Softw. Eng., vol.

38, no. 1, pp. 35–53, Jan. 2012, doi:

10.1109/TSE.2011.28.

[5] M. Biagiola, F. Ricca, and P. Tonella, “Search

Based Path and Input Data Generation for Web

Application Testing,” in Search Based Software

Engineering, T. Menzies and J. Petke, Eds., Cham:

Springer International Publishing, 2017, pp. 18–

32.

[6] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella,

“Diversity-based Web Test Generation,” in

Proceedings of the 2019 27th ACM Joint Meeting

on European Software Engineering Conference

and Symposium on the Foundations of Software

Engineering, in ESEC/FSE 2019. New York, NY,

USA: ACM, 2019, pp. 142–153. doi:

10.1145/3338906.3338970.

[7] Y. Zheng et al., “Automatic Web Testing Using

Curiosity-Driven Reinforcement Learning,” in

Proceedings of the 43rd International Conference

on Software Engineering, in ICSE ’21. IEEE

Press, 2021, pp. 423–435. doi:

10.1109/ICSE43902.2021.00048.

[8] A. van Deursen, A. Mesbah, and A. Nederlof,

“Crawl-based analysis of web applications:

Prospects and challenges,” Sci. Comput.

Program., vol. 97, pp. 173–180, 2015, doi:

https://doi.org/10.1016/j.scico.2014.09.005.

[9] R. S. Sutton and A. G. Barto, Reinforcement

Learning: An Introduction. Cambridge, MA,

USA: A Bradford Book, 2018.

[10] V. Mnih et al., “Playing Atari with Deep

Reinforcement Learning,” CoRR, vol. abs/1312.5,

2013, [Online]. Available:

http://arxiv.org/abs/1312.5602

[11] K. Arulkumaran, M. P. Deisenroth, M. Brundage,

and A. A. Bharath, “Deep Reinforcement

Learning: A Brief Survey,” IEEE Signal Process.

Mag., vol. 34, no. 6, pp. 26–38, Nov. 2017, doi:

10.1109/MSP.2017.2743240.

تولید مورد آزمون » ، کلائی کرم ا و رافع حید و ،عسگری عراقی ریمم [12]

الگوریتم از استفاده با گراف تبدیل توصیفات از مدل بر مبتنی

پرتو دانشگاه «،جستجوی برق مهندسی جلد مجله ، ۴۹تبریز،
 . ۱۳۹۸، ۳۴۳-۳۵۶، صفحات ۱شماره

 ، خلیلیان لیرضاعو دهقانی تفتی حمدرضام ، وحیدی اصل جتبیم [13]

مبتنی» جدید سنجهرویکردی نرمبر افزایش های جهت افزاری

تبریز، جلد مجله مهندسی برق دانشگاه «،سودمندی آزمون بازگشت
 .۱۳۹۹، ۴۶۳-۴۷۶، صفحات ۱، شماره ۵۰

[14] “Claroline.”

https://sourceforge.net/projects/claroline/

(accessed Sep. 15, 2022).

[15] C. J. C. H. Watkins and P. Dayan, “Q-learning,”

Mach. Learn., vol. 8, no. 3, pp. 279–292, 1992,

doi: 10.1007/BF00992698.

[16] R. Bellman, “On the Theory of Dynamic

Programming,” Proc. Natl. Acad. Sci., vol. 38, no.

8, pp. 716–719, 1952, doi: 10.1073/pnas.38.8.716.

[17] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive

Random Testing,” in Advances in Computer

Science - ASIAN 2004. Higher-Level Decision

Making, M. J. Maher, Ed., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 320–329.

[18] S. Sherin, A. Muqeet, M. U. Khan, and M. Z.

Iqbal, “QExplore: An exploration strategy for

dynamic web applications using guided search,”

J. Syst. Softw., p. 111512, 2022, doi:

https://doi.org/10.1016/j.jss.2022.111512.

[19] “The Input element - HTML.”

https://developer.mozilla.org/en-

US/docs/Web/HTML/Element/input (accessed

Feb. 12, 2023).

[20] L. Mariani, M. Pezzè, O. Riganelli, and M.

Santoro, “Automatic Testing of GUI-Based

Applications,” Softw. Test. Verif. Reliab., vol. 24,

no. 5, pp. 341–366, Aug. 2014, doi:

10.1002/stvr.1538.

[21] A. D. Tijsma, M. M. Drugan, and M. A. Wiering,

“Comparing exploration strategies for Q-learning

in random stochastic mazes,” in 2016 IEEE

Symposium Series on Computational Intelligence

(SSCI), Dec. 2016, pp. 1–8. doi:

10.1109/SSCI.2016.7849366.

[22] “Selenium.” https://www.selenium.dev/

(accessed Jan. 11, 2022).

[23] “Keras: Deep Learning for humans.”

https://keras.io/ (accessed Feb. 28, 2022).

[24] “Attendance Management System.” https://code-

projects.org/attendance-management-system-

using-php-source-code/ (accessed Sep. 22, 2022).

[25] “Patient Record Management System.”

https://code-projects.org/patient-record-

management-system-in-php-with-source-code/

(accessed Sep. 22, 2022).

[26] “Bus Booking System.” https://code-

projects.org/bus-booking-system-in-php-with-

source-code/ (accessed Sep. 23, 2022).

Tabriz Journal of Electrical Engineering (TJEE), vol. 54, no. 2, Summer 2024 Serial no. 108

227

[27] “Addressbook.”

https://sourceforge.net/projects/php-

addressbook/ (accessed Sep. 15, 2022).

[28] “Timeclock.”

https://sourceforge.net/projects/timeclock/

(accessed Sep. 16, 2022).

[29] “dimeshift.” https://github.com/jeka-

kiselyov/dimeshift (accessed Sep. 04, 2022).

[30] R. Gopinath, C. Jensen, and A. Groce, “Code

Coverage for Suite Evaluation by Developers,” in

Proceedings of the 36th International Conference

on Software Engineering, in ICSE 2014. New

York, NY, USA: Association for Computing

Machinery, 2014, pp. 72–82. doi:

10.1145/2568225.2568278.

[31] Y. Jia and M. Harman, “An Analysis and Survey

of the Development of Mutation Testing,” IEEE

Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,

2011, doi: 10.1109/TSE.2010.62.

[32] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is

Mutation an Appropriate Tool for Testing

Experiments?,” in Proceedings of the 27th

International Conference on Software

Engineering, in ICSE ’05. New York, NY, USA:

Association for Computing Machinery, 2005, pp.

402–411. doi: 10.1145/1062455.1062530.

[33] J. H. Andrews, L. C. Briand, Y. Labiche, and A.

S. Namin, “Using Mutation Analysis for

Assessing and Comparing Testing Coverage

Criteria,” IEEE Trans. Softw. Eng., vol. 32, no. 8,

pp. 608–624, Aug. 2006, doi:

10.1109/TSE.2006.83.

[34] S. Mirshokraie, A. Mesbah, and K. Pattabiraman,

“Guided Mutation Testing for JavaScript Web

Applications,” IEEE Trans. Softw. Eng., vol. 41,

no. 5, pp. 429–444, May 2015, doi:

10.1109/TSE.2014.2371458.

[35] S. Sherin, M. Z. Iqbal, M. U. Khan, and A. A.

Jilani, “Comparing coverage criteria for dynamic

web application: An empirical evaluation,”

Comput. Stand. Interfaces, p. 103467, 2020, doi:

https://doi.org/10.1016/j.csi.2020.103467.

