
Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

QDFSN: QoS-enabled Dynamic and Programmable

Framework for SDN

Yousef Darmani 1*, Mehrdad Sangelaji2

 Electrical Engineering Dept., K. N. Toosi University of Technology, Tehran, Iran.

1Darmani@kntu.ac.ir , 2M.sangelaji@ee.kntu.ac.ir

*Corresponding Author

 Received: 2019-10-26

 Revised: 2020-09-05

 Accepted: 2020-12-10

Abstract

Software Defined Network (SDN) can integrate a lot of network functions such as network resource management into a consolidated

framework. TCP operates in these networks with low information traffic characteristics. As a result, it has to continuously change

its congestion window size in order to handle drastic changes in the network or its traffic conditions. As a result, TCP frequently

overshoots or undershoots its transmission rate, making it a native congestion control protocol. To overcome that problem, we have

proposed a new QoS framework for SDN called QDFSN (QoS-enabled Dynamic and Programmable Framework for SDN) which

can be effectively applied in Data Centers as well. In this, and by means of AQM (Active Queue Management), a new function for

detecting the upcoming congestion situation is designed. In each node, a developed mathematical model is used to calculate the best

parameters of the node adaptively, especially the service rate, to minimize the congestion in the network. This model is tested in

many NS-2 scenarios, and the results are presented. The results show improvements in selected QoS parameters like throughput

and delay. We conclude that QDFSN-based congestion control shortens the process of adapting TCP to network circumstances, and

enhances the TCP performance.

Keywords

SDN (Software Defined Network) – QoS (Quality of Service) –Data Center

1. Introduction

The structure of all data networks including Internet has
been shaped by connecting of different switches and
routers via telecommunication links. These devices have
been provided by a lot of vendors that produce their
products with distinct hardware and software. The offered
devices are physically and operationally far from each other
but have only one issue in common and it is the
interconnection protocol. This protocol enables the devices
to send and receive data in a predefined manner.
Nowadays, the most common protocol is TCP/IP.

Obviously, due to this diversity of equipment, lots of
Network Management Systems (NMS) are required to
manage the network duties. Each vendor has its own NMS
which can only manage its related devices.

 Now many issues arise when we want to transfer data
from one node to another one which is passing through
devices of different vendors. QoS and congestion control
are two complicated of them. We should control different

routers and switches in an integrated scenario, to offer a
unique and predefined QoS. Moreover, we should manage
each device dynamically to set its parameters to control the
congestion.

To cope with this condition in the current network, we
have to introduce new protocols for QoS management, and
mandatory implement it in all devices, or rely on the
capabilities of the TCP/IP. Actually, it is very hard to
obligate all the vendors to implement a certain protocol.

In this regard, if we have a common and central control
server to manage all of the network devices, a lot of
facilities to implement the QoS requirements will be
available. The concept of Software Defined Network
would be an answer to this problem. Software Defined
Network was perceived at the UC Berkeley and Stanford
University in 2008. The Open Networking Foundation
(ONF) [1], a non-profit industry association originated in
2011, is devoted to the elevation and adoption of SDN

mailto:Darmani@kntu.ac.ir

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

2

through open standards expansion such as OpenFlow
protocol.

The main contribution in SDN is the separation of the
control plane and data plane. In SDN we have a central
server who manages all operation in the network, and send
its messages to the elements via control plane based on the
OpenFlow protocol to all nodes of campus or managed
domain [2]. The data plane has only been used to forward
the data packets between switches and routers of the
network. This is a target that we can try to reach, but in the
reality, it is impractical to think that existing networks are
suddenly going to be divided into completely separate
pieces to make an approach for a new world recommended
by the ONF and software defined networks. It is also
impractical to omit all signs of progress in the networking
technology of the Internet. As an alternative, there is more
likely a hybrid method whereby several portions of
networks are operated by a reasonably centralized
controller, while other portions would be run by the more
traditional dispersed control plane. This would also infer
that those two worlds would need to interwork with each
other.

The TCP is commonly used as the default congestion
control mechanism [3]. Measurements disclose that the
TCP is 99.91% of the traffic in Microsoft data centers [4],
58% of the aggregated global Internet traffic in the world is
video streaming over TCP [5], and measurements from 10
major data centers including university, enterprise, and
cloud data centers show TCP as the leading congestion
control protocol [6]. TCP is a developed protocol and has
been widely studied over several years. Hereafter, network
operators trust TCP as their congestion control mechanism
to make the most of the bandwidth use of their network
while keeping the network steady. Despite that, TCP
functions in these networks with limited knowledge of the
applied network or traffic features. As a result, it is destined
to endlessly increase or decrease its congestion window
size in order to perform alterations in the traffic or network
circumstances. Therefore, TCP often passes or undershoots
the best rate, making its behavior ineffective at times [7]
[8] [9]. TCP is intended to operate in many types of
networks with variant features and traffic situations. We
can observe that even in SDN, the most used protocol for
congestion control is TCP or its derived versions. Though,
restraining TCP to a particular network and taking
advantage of the confined features of that network can
result in major performance improvement.

This paper introduces the use of SDN in combination
with OpenFlow to coordinate the network facilities to
improve the QoS. Originally, we propose a QoS
management framework that allows us to manage the
network flexibly. This is done using the AQM method to
dynamically predict the congestion in all nodes in real-
time. After that, we explain the model that is outperformed
in each node in detail.

 The “end-to-end” argument was considered at first in

the 1980s as an essential strategy principle of the Internet.

Despite huge changes in both primary technologies and

also applications on the Internet, this argument is still

considerably used in network structures. Nonetheless, the

growth of the Internet and the move towards cloud

computing also displays the restrictions of this concept.

The data center environments that require the managing of

the many data flows dynamically, and the variety of the

applications that run on its top, have resulted in the growth

of interpretation of the end-to-end argument. The end-to-

end argument has a valuable effect on the design of the

Internet which is convenient and simple. The simplicity

and stability of the Internet’s design have led to huge

growth, but it makes it hard to modify and manage. Today,

the demand for designing flexible and universally

controlled networks and exclusively data center networks

are steadily in progress.

 To make the network structure flexible, SDN is a tactic

where the “control plane” and the “data plane” are

unconnected. In other words, SDN separates the traffic

management system which makes decisions about traffic

routing (the control plane) from the system beneath that

transmits the traffic to the selected destination (the data

plane) [10]. In the case of using two or more controllers,

the complexity of this concept can be increased of course.

The load balancing between these controllers is another

issue that is under study and there are some newly

proposed methods like distributed load balancing to do

that [11]. The need for simplicity, dynamicity, and

programmability in data centers is echoed in the design of

some concepts related to SDN such as 4D [12], Ethane

[13], Tesseract [14], and Openflow [15]. SDN suggests

several solutions to separate control and data planes in

enterprise networks. This separation simplifies alterations

to the network control sense, enables the data and control

planes to develop and scale individually, and declines the

cost of the data plane portion and improves the possibility

for QoS management [16]. The 4D architecture advocates

decomposition of the network function into data,

dissemination, discovery, and decision planes. Tesseract

implements a 4D control plane and shows the merits of 4D

in practice. Ethane is a distinguished example of modern

work that relies on the parting of data and control planes.

The OpenFlow project was initiated to provide a vendor-

agnostic border with network elements to enable

improvement in the control plane.

2. Related Works

In old deployments of router queue management, the
role of the routers is restricted to dropping packets when a
buffer becomes full (Drop-Tail). TCP sources run a
congestion control protocol that infers packet loss or
increases in RTT as an indication of congestion to which
they reply by decreasing the transmission rate. AQM
mechanisms are paired with the end-to-end congestion
control methods in which the congestion is dynamically
announced to the sources before the overflow in queues;
either obviously by packet marking, or tacitly by dropping
many packets. Random Early Detection (RED) [17], is a
queue-based AQM which links the congestion
announcement to queue size; alternatively, RED drops
packets casually. Some other protocols have been
proposed, including RED with penalty box [18] and Flow
Random Early Drop [19]. These alternatives impose further
operation overhead as they need to collect certain types of
data, the first one monitors the unfavorable flows while the
latter authorizes live connections. Another alternate of
RED is Stabilized RED (SRED) [20] which alleviates the
use of the router queue. SRED approximates the number of
active connections and classifies misbehaving flows, but

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

3

does not offer a simple router mechanism for correcting
these flows. Oppositely, the “CHOose and Keep for
responsive flows, CHOose and Kill for unresponsive
flows” (CHOKe) [21] packet dropping pattern guesses
max-min fairness for the flows that pass over a congested
router. [22] Compares the TCP and AQM mechanisms,
and it tries to give an idea about the best choice of the TCP
and AQM couple in various types of network
environments.

Explicit Congestion Notification (ECN) [23] is an
AQM, initially designed to work in conjunction with RED.
ECN tries to stop packet dropping by marking them using
a distinct field in the IP header. ECN is an optional method
that can only be used when both the receiver and the
transmitter can support it. When ECN is effectively
assigned, an ECN-aware router may set a bit in the IP
packet header in case of dropping a packet in order to
announce incoming congestion. The router which receives
the packets continues to send the congestion sign to the
source, which responds as though a packet is fallen. This
behavior is necessary as it removes the overhead of the
dropped packets. RED and other similar mechanisms are
based on Active Queue Management, whereby an extra
number of packets are naturally dropped by the control
system in the case of congestion. The congestion is detected
only when the queue length is positive. This causes jitter
and delay which are not likely. On the other hand, flow-
based AQMs, such as GREEN [24] [25], control
congestion, and act based on the packet arrival rate.
GREEN processes the packet arrival rate and compares it
with a threshold level. If the estimated data arrival rate of a
link, namely x, is higher than the objective link capacity, c,
the rate of congestion announcement, P, will be added by
x. If x is lower than c, P is decremented by x.

Besides many studies on different aspects of congestion
control methods in the common TCP based networks, some
researchers using the concept of SDN and its related
capabilities to control the congestion. In [10] authors
propose a signaling system that is designed for managing
the cross-layer resources. In this framework, session
control is integrated with the SDN concept to flexibly
manage the services. Introducing a hands-on method, the
proposed solution uses the usual and commonly deployed
technologies to obtain increased benefits of the SDN. This
framework imposes different control methods for the
purpose of multifunctional service adaptation.

In [26] authors developed a routing strategy that is
based on the SDN and is specially designed for energy
saving in QoS-guaranteed backbone links of networks.
With SDN virtualization, the change in the network
topology can be directly detected by the network controller.
In this way, the network can be managed more effectively
and easily. Based on the OSPF (Open Shortest Path First)
protocol, simple changes in the topology of the network can
be handled in this strategy.

In [27] the authors have introduced a framework named

Horizon, which predicts the congestion in a Data Center

Network (DCN) by using a Markov process. Then it

controls the network with the implementation of the user-

centric QoS on the nodes. In [28] the authors use Deep

Packet Inspection (DPI) in SDN to propose an application-

aware system for traffic engineering. They show that, based

on the priorities in the QoS levels, the QoS can be

optimized by fragmenting the flows and classification of

them in different queues.

In [29] the authors have offered a new method to

control the congestion of TCP flows by checking the ACK

packets by the SDN Controller and in this way tried to

modify the ACK header parameters and send them back to

the switches of the network. So the end TCP stack has

remained unchanged.

In [30] the authors have focused on the short-lived
TCP-incast traffic in Data Centers and introduced a method
to decrease the unnecessarily long delays. These delays
cause this kind of flows to wait for the minimum
retransmission timeout (minRTO) to be elapsed.

In order to prioritize different types of traffic such as
video, voice, and data, the authors of [31] propose a
system, which uses a QoS based routing in SDN. So they
can change the configuration of the nodes based on the QoS
requirements.

In [25], a general survey has been performed on the
QoS-Based routing algorithms which are particularly used
in SDN. Two methods have been awarded as the best
performers among many studied solutions, and these are
delay cost-constrained, and Lagrange relaxation
aggregated cost routing algorithms. Another related
algorithm is the Network Protocol-based QoS Routing
which is proposed in [32]. In [33] the authors have studied
the QoS in the VOIP services in SDN. The main parameter
which has been considered is Mean Opinion Score (MOS)
and also packet loss. The contribution in this work is an
architecture that observes the whole network and
recognizes the degradation point of MOS in the network in
order to compensate it.

As can be seen, in previous research, the contributions
are mostly based on the RED algorithm to predict the
congestion and make the proper reaction by dropping the
packets of buffers. This is the same for FRED, SRED, or
CHOKe with different views for prediction. All of these
methods can be applied in a network which has not any
central management on the parameters of the nodes. So,
each node can make its own decision to handle the
congestion.

Consider the concept of SDN, the situation is totally
different. In this case, the condition of all routers can be
observed and it is possible to make decisions to prevent or
remove the congestion and satisfy the required QoS.
Unfortunately, there is not completed related work in this
matter. A research only uses the TCP to get the result [10].
Other works are considering the routing as the main issue
and are trying to find the best routes along with considering
the QoS [26, 31]. Many other studies are trying to propose
various methods based on the end to end dynamic
parameters [27, 28]. There are also some studies based on
the concept of QoS-based routing which has been discussed
in [32] and [33]. [34] Is one of the most related works
which has tried to propose a dynamic platform based on the
observation of the TCP parameters in the SDN.

None of the works use the AQM methods in
combination with the SDN concept to achieve the required
QoS. Therefore, this work integrates the AQM with central
management of SDN to predict the congestion in the whole

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

4

network, and use the results for tuning the nodes’
parameters to get the requested QoS levels.

As a new contribution, we have proposed a new QoS
framework for SDN called QDFSN (QoS-enabled
Dynamic and Programmable Framework for SDN) in this
paper which can be used in Data Centers as well as the wide
area networks. In this framework, employing AQM (Active
Queue Management), a new function has been used for
predicting the upcoming congestion situation. The function
is applied to each node to collaborate with the central
controller. A developed mathematical model is used to
calculate the optimum parameters of the network nodes,
which is concentrated on the service rate. The parameters
are adaptive in order to achieve the minimum congestion in
the network.

The summary of the most related works can be
observed in the following table.

Table I. Summary of Related Works.

No. Related Work Contribution and Proposed
Method

1 [17] RED

2 [19] FRED

3 [20] SRED

4 [21] CHOKe

5 [23] ECN

6 [24] GREEN

7 [10] Signaling System to manage
cross-layer resources

8 [26] Routing Strategy in SDN

9 [27] Horizon with user-centric QoS

10 [28] DPI in SDN

11 [29] Checking the ACK Packets

12 [30] TCP-incast Traffic

13 [31] QoS based routing in SDN

14 [25] QoS based routing in SDN

15 [32] , [33] QoS based routing for VOIP in
SDN

3. QDFSN

 This research presents a QoS-enabled Dynamic and

Programmable Framework to minimize congestion control

in SDN-enabled data centers. The proposed framework

gathers information about the status of the network and

traffic conditions through the SDN controller of each node

and uses this information to minimize the congestion in the

network.

 Instead of TCP end-to-end control mechanism, this

work introduces QDFSN as a dynamic adaptation of TCP

based on traffic conditions using the SDN concept. Using

the SDN idea, QDFSN mainly focuses on interior traffic

in SDN-based data centers. Actually, the SDN controller

has a universal overview of the network, such as its

topology plan and routing information table, and the

controller can easily collect appropriate statistics namely,

link utilization and traffic congestion notifications. So,

QDFSN is deployable as a direct controller application in

SDN. QDFSN can be organized in any traditional network

by imitating a centralized controller, and gathering

network statistics. Our implementation of QDFSN is based

on OpenFlow, even though QDFSN should work with any

other SDN protocols. A key decision is how we want

QDFSN to control the TCP’s action. We can either

indirectly modify TCP’s parameters by changing the

information delivered to the nodes (for example, through

ECN bits), or directly modify it by having an agent running

on the node ports that can update TCP parameters by

request. The first choice does not require any changes in

the node but gives us slight elasticity to make the desire

deviations. While our nodes are managed under integrated

management control, making any change on them is not so

difficult. This is accurate for example in a data center

setting. Consequently, we have intended QDFSN under

the supposition that we may change nodes and install an

insubstantial agent that can clearly affect TCP sessions.

Using the advantages of possible extensible TCP

applications, we can easily adapt TCP and even present a

complete new congestion control mechanism. On the other

hand, we have more time to control the nodes’ parameters.

TCP’s congestion control updates occur on a time scale of

the network round-trip time (RTT). This signifies

microseconds in data center atmospheres. QDFSN adjusts

TCP sources on a time scale, T, which is several times

slower than RTTs. The precise value of T is selected by

the network administrator. In order to preserve the

instability in the network, T requires being a few orders of

magnitude higher than the network RTT. Instinctively, by

smooth amending of TCP parameters, QDFSN gives each

TCP period sufficient time to be changed to a stable state

before informing its condition. Furthermore, the time

period required for applying the modifications of the

parameters is much higher than the RTT of the network by

few orders, and so QDFSN can guarantee a very limited

overhead on the SDN controller. Here is a part of NS-2

code to simulate the QDFSN.

$ns import _OpenFlow();

$ns import _SDN();

$ns append

_packet(data,video,emergency) append

scheduler(classifier)

set Flow(1,2,3) append queue();

$ns _SamplingRate append 1/2S;

$ns _Congestion($Queue(lentgh));

$ns set $packet(ECN(1))

$node() _congestion(flow);

$ns _Flow(trigger) CAC;

 Under the supervision of QDFSN in the central

controller, we should optimize the function which is

defined for measuring the congestion in all of the nodes.

On the other words, at the same time, the information is

gathered from all of the nodes, and based on that the

function is optimized regarding the situation of all nodes

in the entire network. Then the central controller applies

the calculated parameters back on the nodes to get the best

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

5

optimized performance in the network. The probability

function is presented in (1).

𝑃𝑐𝑜𝑛𝑔 = {𝑓(𝑋(𝑡), 𝑃𝑚𝑎𝑥)

1, 𝑖𝑓 𝑇𝐻𝑚𝑎𝑥 ≤ 𝑋(𝑡)

, 𝑖𝑓 𝑇𝐻𝑚𝑖𝑛 ≤ 𝑋(𝑡) < 𝑇𝐻𝑚𝑎𝑥

0, 𝑖𝑓 𝑋(𝑡) < 𝑇𝐻𝑚𝑖𝑛

(1)

 Pcong is the probability of congestion in any node and X(t)

is the parameter which is used for congestion detection and

obviously is the queue length. The central controller is

using this probability to sense the congestion in each node

and do the optimization calculation to find the optimized

parameters to overcome the congestion problem.

 Using linear programming for optimizing this function

we get (2). In this model, we are using the (μij) as the

parameter which is the service rate of each buffer, and try

to minimize the function for queue length of buffers (qij)

in the network. Actually (qij) is the queue length which is

normalized by the maximum length of the buffer and has

a value between 0 and 1.

 minimize ∑ ∑ 𝑞𝑖𝑗(𝜇𝑖𝑗)𝑚
𝑗=1

𝑛
𝑖=1 (2)

𝑞𝑖𝑗(𝜇𝑖𝑗) ≥ 𝑀𝑖𝑛 𝑇𝐻𝑖𝑗 , (i = 1, … , n & j = 1, … , m) (I)

𝑞𝑖𝑗(𝜇𝑖𝑗) ≤ 𝑀𝑎𝑥 𝑇𝐻𝑖𝑗 , (i = 1, … , n & j = 1, … , m) (II)

𝑞1𝑗(𝜇1𝑗) ≤ 𝑞2𝑗(𝜇2𝑗) ≤ ⋯ ≤ 𝑞𝑛𝑗(𝜇𝑛𝑗) , (j = 1, … , m)

(III)

∑ 𝐶𝑖𝑗
𝑛
𝑖=1 = 𝐶𝑜𝑢𝑡 𝑗 , (j = 1, … , m) (IV)

0 ≤ 𝑞𝑖𝑗 (𝜇𝑖𝑗) ≤ 1 , (i = 1, … , n & j = 1, … , m) (V)

𝜇𝑖𝑗 ≤ 𝐶𝑖𝑗 , (i = 1, … , n & j = 1, … , m) (VI)

 There are some conditions that should be satisfied to get

the converged answer. In conditions (I) and (II) it’s

assumed that queue length will not exceed the upper and

lower bounded limits. In condition (III) we assume that

queue length of higher priority buffers should be less than

the lower priority buffers. Otherwise, the packets should

be transmitted firstly from the higher priority buffers to

meet this condition. The main reason for this constraint is

applying the class of priority to different buffers.

Obviously, this constraint is a non-linear conditional

constraint and adds a lot of complexity to solving of the

problem. So we should relax this condition in some cases.

This is a conditional constraint and we can use some

solutions like big M or using objective functions to solve

the model. At some conditions, the length of the queue in

higher priority buffer is non zero while the traffic is not

present in other buffers. In this case, maximum output

capacity will be dedicated to it to handle the packets inside

of high priority buffer. The total output bitrate of the

buffers is equal to the capacity of each output link and this

limitation is shown in the condition (IV). It relates to the

length of each packet in the buffer and the rate of service

for that buffer. The queue length function will be between

0 and 1 which is shown in condition (V). The maximum

value of service rate in each buffer is the output rate

capacity of that buffer which is shown in condition (VI).

 The qij is the buffer length. μij is the service rate in each

node. Min THij is the minimum congestion threshold

indicator. Max THij is the maximum congestion threshold

indicator. Cij is the maximum transmission capacity of

each buffer. Coutj is the overall node capacity. In these

equations “i” is the index of buffers and “j” is the index of

the nodes’ ports in the network. N is the number of buffers

in each node. M is the number of nodes’ ports in the

network. Figure 1 shows a schematic of the central

congestion control unit. In this model, the congestion in

the entire network has been controlled by the central

congestion control server. Each port in each node has

different buffers for classifying the traffic based on the

priority of each traffic class. The service rate of each buffer

is controlled by the central server, and in periodic

intervals, this rate has been re-calculated by the controller

and will be implemented to the appropriate buffers of the

port in each node. In this way, the rate of output traffic for

different flows is controlled and throttled and this will

prevent the congestion and packet drop in the next node.

By making these arrangements the congestion probability

will be reduced and this matter will reduce the number of

packet drops and retransmission of packets by itself.

 Again please notice that the calculations in each cycle

will be made only when the congestion condition in each

node is recognized by the central controller, and if, only

higher priority buffer has the traffic, all of the output

capacity of the link will be dedicated to that buffer e.g.

 This optimization problem will be solved by solving a

linear programming case by using the proper software. We

have used the functional libraries of NS-2 to solve the

problem and simulation of the results. Of course, it’s

possible to use another software like MATLAB for solving

the linear programming problems. The output of this

optimization is the minimized total buffer length in the

network by applying the calculated optimized amounts of

service rate in each buffer.

Fig. 1. The Schematic view of congestion control model.

 The state diagram of this model has been shown in

Figure 2.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

6

Fig. 2. State diagram of the controller in the proposed

model.
 As can be seen, the system starts with monitoring and

gathering the parameters and congestion indexes from all

of the nodes. Then the controller checks the indicators to

see if there is any congestion in the network. If there is not

any congestion, the algorithm repeats in a timely manner.

If the system detects any congestion, it optimizes the

network parameters based on the mentioned mathematical

model. At the next step, the new obtained parameters

which are resulted from the converged calculation are

implemented on the network nodes, and the system enters

the monitoring state again.

 Please consider this not the complete state diagram of the

entire controller, but it shows the state diagram of the

congestion control module. We have considered this

module as one of the internal modules in the central

controller. There are some reasons to select such a

structure. As it’s clear, there is a considerable amount of

calculations for making the congestion control model be

convergent. So it needs suitable processing power which

should be dedicated by the main controller. Otherwise,

some other important decisions should be made by the

controller and have a relation with QoS control like the

routing algorithm. This relation has resulted in the

introduction of some methods that perform the QoS

management along with the routing at the same time. All

of these facts will force us to consider the congestion

control module as one of the internal modules of the

central controller.

4. Results

 The primary goal of QoS is to provide priority including

dedicated bandwidth, controlled jitter and latency,

required by many real-time and interactive traffics, and

also, controlling packet loss. Moreover, it is important to

make sure that providing priority for one or more flows

does not affect other flows.

 To evaluate the effectiveness of the proposed model for

improving the QoS parameters, it is simulated using the

NS-2. To evaluate the real performance of the model, three

parameters named throughput, delay, and energy

consumption are examined. First, we simulate the

proposed model with one node and continue the simulation

for up to 150 nodes in the network. A simulation set is

performed when SDN is enabled. Another simulation is

done with OpenTCP [34] context and another simulation

with TCP protocol.

 For considering the input traffic, please observe the table

2 and 3 which are showing the parameters and features of

that. We have assumed that input traffic is randomly

applied on the nodes for the large scale networks with 100

or 150 nodes but in more simple conditions the situation is

completely explained in detail.

 First, we test our method on a simple network including

only two nodes. We suppose that we have three kinds of

flows including High Priority, Low Priority, and Best

Effort. In this simple network, we have the topology as

Figure 3.

Fig. 3. Simple network with two nodes.

The simulation parameters are as table II.

Table II. Simulation parameters for a network with 2

nodes.

Flow

CBR

(Kbps)

RTT

(ms)

Start

(Sec)

End

(Sec)

Packet

Length

(Byte)

High

Priority

5000 7.66 3 100 500

Low

Priority

3000 5.4 7 95 250

Best

Effort

3000 8.3 17 32 250

We compare the simulation result of these three methods

as follows.

Fig. 4. Comparison of Throughput based on Mbps in a

simple network with two nodes. The triangle line is

related to the SDN-enabled network, the squared line

represents the open-TCP network and the circled line is

related to the network which is pure TCP

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

7

 It can be observed that using QDFSN has given us more

throughputs on the congested link. As seen in Figure 4 the

overall throughput of the network with SDN

implementation is 8 Mbps while the overall throughput of

OpenTCP implementation is 6 Mbps and TCP

implementation is 4 Mbps.

 In this situation, the utilization ratio is above 80% which

is more than other methods.

 At a second step, we assume a more complex network

with 5 nodes. The topology of this network has been

selected as in Figure 5. In this case, we still have a

bottleneck link but with more routes in the next hops. To

have a different condition we preferred to increase the

bandwidth of the links to 12 Mbps.

Fig. 5. Schematic view of a network with five nodes.

 The simulated parameters are based on table III.

Table III. Simulation parameters for a network with 5

nodes.

Flow

CBR

(Kbps)

RTT

(ms)

Start

(Sec)

End

(Sec)

Packet

Length

(B)

High

Priority

5000 7.66 3 100 500

Low

Priority

4000 5.4 7 95 250

Best

Effort

4000 8.3 17 32 250

 The simulation has been done with three methods and

the result has been demonstrated in Figure 6.

Fig. 6. Comparison of Throughput based on Mbps in a

simple network with five nodes. The triangle line is

related to the SDN-enabled network, the squared line

represents the open-TCP network and the crossed line is

related to the network which is pure TCP.

 A comparison between QDFSN and other methods

shows that the overall throughput is getting better. In the

test, the OpenTCP implementation has negligible jitter, but

overally, the performance of SDN is better than OpenTCP

and TCP implementations. The results show about 12

Mbps for SDN-based network, 10 for OpenTCP

implementation, and 8 Mbps for TCP. At the next step, we

try to test the idea on the more complex network

topologies. In this regard we built new random topology

with 100, and also 150 nodes to simulate the model in a

larger network.

 View of these topologies is shown in Figures 7 and 8.

Fig. 7. NAM representation of network (Closed view -

Upper bound).

Fig. 8. Schematic view of the simulated network (Bottom

bound - closed view).

 At this time, we focused on other parameters such as

delay and energy consumption. Please notice that energy

consumption is the power that is consumed in the central

controller server for processing. Actually, it will show the

amount of processing that is required to solve the

equations of the model with convergence and calculate the

required parameters for controlling the network traffic. As

the first scenario, we load the network with three flows that

have different levels of priority. These flows are

transmitted into the network through random nodes. We

select a congested network with minimum traffic. Now we

can compare many quality-related parameters including

throughput, delay, and energy consumption. Please

notice that the energy in the form of power can be also

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

8

saved by controlling the frequency of the central processor

based on the volume of traffic [35].

 Like the first simulation, we choose the parameters

based on table 2. The bandwidth of each link in the

network is 10 Mbps and we are confident that the total

amount of injected traffic is much higher than this value.

 We tested this condition in different topologies and the

results are evaluated for two random 100-nodes and 150-

nodes network. Consider that topology of these two

networks is random and there is not any similarity between

them, so it is possible that each network shows a specific

response to the traffic congestion, and it is because of a

possible bottleneck in their connections.

 Figures 9 to 11 are shown the delay, energy

consumption, and throughput in a 100-nodes random

network.

Fig. 9. Comparison of delay imposed to network with 100

nodes. The squared line is related to the SDN-enabled

network, the crossed line represents the open-TCP

network and the triangle liner is related to the network

which is pure TCP.

Fig. 10. Comparison of energy consumption of a network

with 100 nodes. The squared line is related to the SDN-

enabled network, the crossed line represents the open-

TCP network and the triangle line is related to the

network which is pure TCP.

Fig. 11. Comparison of throughput gained from a

network with 100 nodes. The squared line is related to the

SDN-enabled network, he crossed line represents the

open-TCP network and the triangle line is related to the

network which is pure TCP.

 To further evaluate our proposed model, we repeat the

simulations with a higher number of nodes in a 150-nodes

random network. This time, 150 nodes are in a simulation

environment, and these results are obtained which are

shown in Figures 12 to 14.

Fig. 12. Comparison of delay imposed to network with

150 nodes. The squared line is related to the SDN-

enabled network, the crossed line represents the open-

TCP network and the triangle line is related to the

network which is pure TCP.

Fig. 13. Comparison of energy consumption of a network

with 150 nodes. The squared line is related to the SDN-

enabled network, the crossed line represents the open-

TCP network and the triangle line is related to the

network which is pure TCP.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

9

Fig. 14. Comparison of throughput from a network with

150 nodes. The squared line is related to SDN-enabled

network, the crossed line represents the open-TCP and

the triangle line is related to the network which is pure

TCP.

 As seen, TCP pacing positively mitigates the TCP

concurrent flows. In a large network or data center with

thousands of simultaneous flows, it is almost impossible

to guarantee that the number of live flows will always be

less than any threshold. Consequently, providers are

unwilling to permit pacing despite its proven efficiency.

Nonetheless, with the proposed method, TCP can be

dynamically managed to ensure the system works at its

peak performance.

 Diagrams show that using the QDFSN in a network with

a noticeable number of the nodes can enhance the

performance of the network. The Throughput in both 100

and 150 nodes networks is higher than other methods.

Consider that the numeric values of the throughput are not

important because it deeply depends on the network

topology and interconnection of its links. The same case

applies for the delay. It is shown that the delay has been

lowered for the flows using the QDFSN in comparison

with other methods, and this means that flows with higher

priority can pass through the network with guaranteed

quality.

 Although using QDFSN leads to better performance, it

has its own price which is more energy consumption. As

seen in the related diagrams, the energy consumption of

the QDFSN method is higher than pure TCP, and also than

open-TCP. For pure TCP it’s clear because there is not any

calculation for pure TCP in meanwhile of flow transfer and

all of the decisions are made end-to-end. But in

comparison with open-TCP still we have more

calculations to solve our more complex model in QDFSN

and it takes more energy. Of course, the difference is not

considerable and will be decreased by time. Notice that at

the beginning of each calculation cycle, the volume of

calculations in the QDFSN is much higher than other

methods, and energy consumption diagrams are showing

this. By passing a reasonable period, the input traffic that

may have the burst nature will be controlled between the

buffers and the amount of processing will be decreased in

a result.

5. Conclusion

 Congestion control has been widely studied for several

years. In light of the emerging popularity of centrally

controlled SDN, we ask whether we can take advantage of

the information available at the central controller to

improve TCP. Specifically, in this paper, we examine the

design and implementation of QDFSN, a dynamic and

programmable TCP adaptation framework for SDN-

enabled data centers. QDFSN gathers information about

the status of the network and traffic conditions through the

SDN controller per node and uses this data to adjust TCP.

QDFSN sporadically sends updates to nodes which, in

turn, inform their behavior using a simple kernel part. In

this paper, we discuss the architectural design of QDFSN,

as well as its implementation and simulation with the

open-source discrete event simulator NS-2.

In other words, in this research, we proposed a new QoS

framework for SDN called QDFSN. Compared with

traditional TCP function, QDFSN-based congestion

control shortens the process of adjusting TCP to network

circumstances. Using the SDN concept, QDFSN can alter

TCP's parameters. We take advantage of the information

available in the central controller to improve the

performance of TCP. In QDFSN, the network operator has

complete control over the changes applied totally through

the congestion control rules. Congestion control plans tell

QDFSN how to adjust and which constraints to satisfy.

Although this gives choice to the network operator, it runs

the possibility of instability in the network. This is because

the operator might define an unstable congestion control

procedure or it might present mismatched congestion

control policies in the whole network. Instability might

likewise be caused if the operator chooses an inappropriate

time scale to update TCP agents. QDFSN takes steps to

guarantee the stability of the system in practice changing

the default TCP parameters when it faces instability in the

arrangement. A more prescribed definition of stability

along with theoretical exploration and further trials

remains an interesting future work. Besides, we had not

any assumption about the location of the controller and the

effect of the propagation delay of the command between

the controller and the nodes, and it may become a

challenging issue to study.

6. References

[1] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A.

Vahdat, and M. Yasuda, “Less is more: trading a little
bandwidth for ultra-low latency in the data center”,
NSDI’12 Proceedings of the 9th USENIX conference
on Networked Systems Design and Implementation,
2012, San Jose, CA pp. 19–19.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.
Turner, “OpenFlow: enabling innovation in campus
networks”, ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 69–74,
2008. DOI: 10.1145/1355734.1355746.

[3] V. Jacobson, “Congestion avoidance and control”,
ACM SIGCOMM CCR, vol. 25, no. 1, pp. 157–187,
1995. DOI:10.1145/205447.205462.

[4] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P.
Patel, B. Prabhakar, S. Sengupta, and M. Sridharan,
“Data Center TCP (DCTCP)”, ACM SIGCOMM,
2010, New Delhi, India pp. 63–74.
DOI:10.1145/1851182.1851192.

[5] Sandvine global Internet report.
https://www.sandvine.com/hubfs/downloads/phenom
ena/2018-phenomena-report.pdf, Oct. 2018.

[6] T. Benson, A. Akella, and D. Maltz, “Network traffic
characteristics of data centers in the wild”, Internet
Measurement Conference, 2010, Melbourne,
Australia pp. 267–280. DOI:
10.1145/1879141.1879175.

Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021 Serial no. 95

10

[7] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D.
Joseph, “Understanding TCP incast throughput
collapse in datacenter networks”, WREN, 2009,
Barcelona, Spain pp. 73–82.
DOI:10.1145/1592681.1592693.

[8] C. Jerry, “Tuning TCP Parameters for the 21st
century”, http://www6.ietf.org/mail-
archive/web/tcpm/current/msg04707.html.

[9] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat,
D. G. Andersen, G. R. Ganger, G. A. Gibson, and B.
Mueller, “Safe and effective fine-grained TCP
retransmissions for datacenter communication”,
SIGCOMM, 2009, Barcelona, Spain, pp. 303–314.
DOI:10.1145/1592568.1592604.

[10] W. Cerroni, M. Garbaoei, “Cross-layer resource
orchestration for cloud service delivery: A seamless
SDN approach”, Computer Networks, vol. 87, pp. 16-
32, 2015. DOI:10.1016/j.comnet.2015.05.008.

[11] B. Ahmadi; Z. Movahedi, “Stable Distributed Load
Balancing between Controllers in Software Defined
Networks”, Article 2, vol. 49, Issue 1 - Serial Number
87, Spring 2019, Page 13-23.

[12] Greenberg, G. Hjalmtysson, D. A Maltz, A. Myers, J.
Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A
clean slate 4D approach to network control and
management”, ACM SIGCOMM Computer
Communication Review, 2005, vol. 35, no. 5, pp. 41-
54. DOI:10.1145/1096536.1096541.

[13] Software Defined Networks (SDN) talk at Structure
2010. http://www.openflowswitch.
org/wp/2010/07/software-defined-networks-sdn-talk-
at-structure-2010/.

[14] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H.
Zhang, and Z. Cai, “Tesseract: A 4D network control
plane”, 4th Symposium on Networked Systems
Design and Implementation, 2007, Cambridge,
Massachusetts, USA.

[15] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N.
McKeown, and S. Shenker, “Ethane: taking control of
the enterprise”, SIGCOMM '07 Proceedings of the
2007 conference on Applications, technologies,
architectures, and protocols for computer
communications, 2007, Kyoto, Japan vol. 37, no. 4,
pp. 1–12. DOI:10.1145/1282380.1282382.

[16] M. Karakus, A. Durresi, “Quality of Service (QoS) in
Software Defined Networking (SDN): A survey”,
Journal of Network and Computer Applications, vol.
80, pp. 200-218, 2017.
DOI:10.1016/j.jnca.2016.12.019.

[17] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance”, IEEE/ACM
Transactions on Networking, vol. 1, no. 4, pp. 397–
413, 1993. DOI:10.1109/90.251892.

[18] S. Floyd and K. Fall, “Router mechanisms to support
end-to-end congestion control”, Technical report,
1997.

[19] D. Lin and R. Morris, “Dynamics of random early
detection”, Proceedings of the ACM SIGCOMM '97
?Conference on Applications, technologies,
architectures, and protocols for computer
communication, 1997, Cannes, France,vol. 27, no.4,
pp. 127–137. DOI:10.1145/263105.263154.

[20] T. Ott Lakshman, T. V. Lakshman, and L. Wong,
“Sred: Stabilized red”, IEEE INFOCOM '99,
Conference on Computer Communications, New
York, NY, USA,1999, pp. 1346–1355. DOI:
10.1109/INFCOM.1999.752153.

[21] R. Pan, B. Prabhakar, and K. Psounis, “Choke - a
stateless active queue management scheme for
approximating fair bandwidth allocation”,
Proceedings IEEE INFOCOM 2000, Conference on
Computer Communications, 1999. DOI:
10.1109/INFCOM.2000.832269.

[22] C. A. Grazia, N. Patriciello, M. Klapez and M.
Casoni, “A cross-comparison between TCP and AQM
algorithms: Which is the best couple for congestion
control?”, 14th International Conference on
Telecommunications (ConTEL), Zagreb, 2017, pp.
75-82. DOI: 10.23919/ConTEL.2017.8000042.

[23] S. Floyd, “TCP and explicit congestion notification”,
ACM Computer Communication Review, vol. 24, no.
5, pp. 10–23, 1994. DOI:10.1145/205511.205512.

[24] J. Hong, C. Joo, and S. Bahk, “Active queue
management algorithm considering queue and load
states”, Proceedings, 13th International Conference
on Computer Communications and Networks,
Chicago, IL, USA, 2007, vol. 30, pp. 886–89. DOI:
10.1109/ICCCN.2004.1401608.

[25] J. W. Guck, A. Van Bemten, M. Reisslein and W.
Kellerer, “Unicast QoS Routing Algorithms for SDN:
A Comprehensive Survey and Performance
Evaluation”, IEEE Communications Surveys &
Tutorials, vol. 99, pp. 1-1, 2017. DOI:
10.1109/COMST.2017.2749760.

[26] P. Hongyu, W. Weidong, and W. Chaowei, “QoS-
guaranteed energy saving routing strategy using SDN
central control for backbone networks”, The Journal
of China Universities of Posts and
Telecommunications , vol. 22, no. 5, pp. 92-100,
2015. DOI:10.1016/S1005-8885(15)60686-0.

[27] J. Pang, G. Xu, X. Fu, K. Zhao, “Horizon: a QoS
management framework for SDN-based data center
networks”, Annals of Telecommunications, vol. 72,
no. 1, pp. 597–605, 2017. DOI: 10.1007/s12243-017-
0579-2.

[28] S. Jeong, D. Lee, J. Hyun, J. Li and J. W. K. Hong,
“Application-aware traffic engineering in software
defined network”, 19th Asia-Pacific Network
Operations and Management Symposium
(APNOMS), 2017, Seoul, Korea (South), pp. 315-
318. DOI:10.1109/APNOMS.2017.8094144.

[29] A. Volkan Atli, M. Serkant Uluderya, S. Civanlar, B.
Görkemli, A. Murat Tekalp, “TCP congestion
avoidance for selective flows in SDN”, 26th Signal
Processing and Communications Applications
Conference (SIU), 2018. DOI:
10.1109/SIU.2018.8404643.

[30] A. M. Abdelmoniem, B. Bensaou, A. James Abu,
“Mitigating incast-TCP congestion in data centers
with SDN”, Annals of Telecommunications, April
2018, Volume 73, Issue 3–4, pp. 263–
277.DOI:10.1007/s12243-017-0608-1.

[31] A. Kucminski, A. Al-Jawad, P. Shah and R. Trestian,
“QoS-based routing over software defined networks”,
IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB),
2017, Cagliari, pp. 1-6. DOI:
10.1109/BMSB.2017.7986239.

[32] Shakthipriya P., Bevi A.R., “Network Protocol-
Based QoS Routing Using Software Defined
Networking. Artificial Intelligence and Evolutionary
Computations in Engineering Systems”, Springer,
Singapore, pp. 363-374, 2017. DOI:10.1007/978-
981-10-3174-8_32.

[33] B. Siniarski, C. Olariu, P. Perry and J. Murphy,
“OpenFlow based VoIP QoE monitoring in enterprise
SDN”, IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), Lisbon, 2017, pp.
660-663. DOI: 10.23919/INM.2017.7987354.

[34] M. Ghobadi, “TCP Adaptation Framework in Data
Centers. Doctor of Philosophy, Graduate Department
of Computer Science”, University of Toronto, 2013.

[35] A. Ghiasian, “Frequency scaling approach to reduce
the power consumption of Openflow switches”,
Tabriz Journal of Electrical Engineering, Volume 49,
Issue 3 - Serial Number 89 , pp. 1273-1282 Autumn
2019.

