مقایسه بین الگوریتم‌های بهینه‌سازی برای تنظیم پارامترهای ارتباط کنترل‌شده مبتنی بر فازی در سیستم‌های کنترل شبکه

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه سمنان

چکیده

هدف این مقاله بهبود عملکرد سیستم‌های کنترل شبکه با استفاده از ارتباط کنترل‌شده با منطق فازی بهینه‌شده است. با استفاده از منطق فازی و تخمین‌گرهای بهینه فیلتر کالمن تعیین می‌شود که چه زمانی داده‌ها روی شبکه قرار گیرند تا ترافیک شبکه کاهش یابد. لازم به توضیح است که نیازی نیست که همواره اطلاعات روی شبکه ارسال شود و اندازه‌گیری‌ها به‌صورت محلی قبل از ارسال پردازش می‌شوند. در این مقاله، از الگوریتم‌های بهینه‌سازی مبتنی بر جمعیت برای تنظیم پارامترهای سیستم فازی کنترل منطق ارتباطی استفاده می‌شود. عملکرد کنترل‌کننده‌های تنظیم‌شده با استفاده از نتایج به‌دست آمده از الگوریتم‌های بهینه‌سازی ازدحام ذرات، الگوریتم ژنتیک، الگوریتم رقابت استعماری، الگوریتم بهینه‌سازی بر پایه جغرافیای زیستی، الگوریتم کلونی مورچه‌ها مقایسه می‌شوند. روش به‌دست آمده بر روی دو سیستم جرثقیل سقفی شبکه‌شده با مشخصه‌های غیرخطی شبیه‌سازی می‌شود. نتایج شبیه‌سازی اعتبار روش پیشنهادی را اثبات می‌کند. درحالی‌که همه الگوریتم‌ها نتایج قابل قبولی ایجاد کرده‌اند، بهترین عملکرد در استفاده از الگوریتم بهینه‌سازی ازدحام ذرات از لحاظ کمینه‌کردن تابع هدف و خطای ردیابی مشاهده شده است و نشان داده می‌شود این الگوریتم قادر است مشکل هماهنگ‌سازی دو جرثقیل تحت شبکه به هنگام جابه‌جایی بار با حجم بالا را، با کارآیی بالا حل کند.

کلیدواژه‌ها


عنوان مقاله [English]

A comparison between optimization algorithms for the tuning of fuzzy based controlled communication for networked controlled systems

نویسندگان [English]

  • M. Esbati
  • M. Ahmadieh Khanesar
  • A. Shahzadi
Faculty of Electrical and Computer Engineering, University of Semnan, Semnan, Iran
چکیده [English]

The goal of this paper is improvement of the operation of networked control systems using optimized fuzzy logic controlled communication. Network traffic is reduced with optimal kalman filter estimator and fuzzy logic. It should be explained, there is no need to send information on the network continuously and the measurements are processed locally before sending. In this paper, population based optimization algorithms are used to set the parameters of fuzzy system for control the communication logic. The performance of regulated controllers are compared by the results of Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Biogeography Based Optimization (BBO), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization with continuous domain (ACOR) algorithms. The proposed method is simulated on two overhead cranes over a network with nonlinear features. Simulation results prove the validation of the proposed solution. While the results of all algorithms are reasonable but PSO algorithm has best result in reducing tracking error and fitness function point of view. Simulation results illustrate the effectiveness of proposed control system in coordination of two cranes over the network in moving heavy loads.

کلیدواژه‌ها [English]

  • Networked control systems
  • Fuzzy Communication logic
  • intelligent algorithms
  • state estimators
[1] M. A. Khanesar, O. Kaynak, S. Yin and H. Gao, “Adaptive indirect fuzzy sliding mode controller for networked control systems subject to time-varying network-induced time delay,” IEEE Transactions on Fuzzy Systems, vol. 23, no.1,pp. 205-214, 2015.
[2] J. P. Hespanha, P. Naghshtabrizi and Y. Xu, “A survey of recent results in networked control system,” Proceedings-IEEE, vol. 95, no.1, pp.138, 2007.
[3] Y. Ke-You and X. Li-Hua, “Survey of recent progress in networked control systems,” Acta Automatica Sinica, vol. 39, no.2, pp. 101-117, 2013.
[4] Y. Ge, L. Tian and Z. Liu,"Survey on the stability of networked control systems," Journal of Control Theory and Applications vol. 5, no. 4, pp. 374-379, 2007.
[5] K. You, N. Xiao and L. Xie, “Overview of Networked Control Systems,” In Analysis and Design of Networked Control Systems, Springer London, pp. 1-7, 2015.
[6] R. A. Gupta and M. Y. Chow, “Networked control system: overview and research trends,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp. 2527-2535, 2010.
[7] C. Meng, T. Wang, W. Chou, S. Luan, Y. Zhang and Z. Tian, “Remote surgery case: robot-assisted teleneurosurgery,” In IEEE Int. Conf. on Robot. and Auto. (ICRA'04), vol. 1, pp. 819-823, Apr. 2004.
[8] P. Seiler and R. Sengupta,” Analysis of communication losses in vehicle control problems,” In Proc. of the 2001 Amer. Contr. Conf., vol. 2, pp. 1491-1496, June 2001.
[9] P. Seiler and R. Sengupta,” An   approach to networked control,” IEEE Trans. on Automat. Contr., vol. 50, no. 3, pp. 356-364, Mar.2005.
[10] محسن بحرینی، طاهره بینازاده، ملیحه مغفوری فرسنگی و جعفر زارعی، «پایدارسازی تصادفی زمان-محدود توسط فیدبک خروجی برای سیستم کنترل تحت شبکه با رویکرد سیستم‌های پرش مارکوف»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 25-35، تابستان 1395.
[11] J. P. Hespanha and A. R. Mesquita, “Networked control systems: estimation and control over lossy networks,” Encyclopedia of Systems and Control, pp. 842-849, 2015.
[12] J. P. Hespanha, A. Ortega and L. Vasudevan, “Towards the control of linear systems with minimum bit-rate,” In Proc. of the int. symp. on the mathematical theory of networks and syst, p. 1. 2002.
[13] G. N. Nair and R. J. Evans, “Exponential stabilisability of finitedimensional linear systems with limited data rates,” Automatica, vol. 39, no. 4, pp. 585–593, Apr. 2003.
[14] S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE Trans. on Automat. Contr., vol. 49, no. 7, pp. 1056–1068, July 2004.
[15] J. H. Braslavsky, R. H. Middleton and J. S. Freudenberg. “Feedback stabilization over signal-to-noise ratio constrained channels,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1391-1403, 2007.
[16] W. S. Wong and R. W. Brockett, “Systems with finite communication bandwidth constraints–II: Stabilization with limited information feedback,” IEEE Trans. on Automat. Contr., vol. 44, no. 5, May 1999.
[17] G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran. “Topological feedback entropy and nonlinear stabilization,” IEEE Trans. on Automat. Contr., vol. 49, no. 9, pp. 1585-1597, Sept. 2004.
[18] D. Liberzon and J. P. Hespanha. “Stabilization of nonlinear systems with limited information feedback,”. IEEE Trans. On Automat. Contr., vol. 50, no. 6, pp. 910-915, June 2005.
[19] J. K. Yook, D. M. Tilbury and N. R. Soparkar, “Trading computation for bandwidth: Reducing communication in distributed control systems using state estimators,” IEEE Trans. Contr. Syst. Technol, vol. 10, no. 4, pp. 503–518, July 2002.
[20] Y. Xu and J. P. Hespanha. “Communication logics for networked control systems,” In Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 4, pp. 3527-3532. IEEE, 2004
[21] Y. Xu and J. P. Hespanha” Optimal communication logics for networked control systems,” In Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 4, pp. 3527-3532. IEEE, 2004.
[22] Y. Xu and J. P. Hespanha. “Estimation under uncontrolled and controlled communications in networked control systems,” In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on, pp. 842-847. IEEE, 2005.
[23] D. Han, Y. Mo, J. Wu, S. Weerakkody, B. Sinopoli and L. Shi, “Stochastic event-triggered sensor schedule for remote state estimation,”. IEEE Transactions on Automatic Control, vol. 60, no.10, pp. 2661-2675, 2015.
[24] سعید اباذری و امید مرادی، «بهبود میرایی نوسانات سیستم قدرت با به‌کارگیری UPFC و تنظیم پارامترهای کنترل‌کننده بر اساس یک الگوریتم جدید PSO»، دوره 46، شماره 1، صفحه 1-11، بهار 1395.
[25] J. Kennedy “Particle swarm optimization,” In Encyclopedia of machine learning, pp. 760-766, Springer US, 2011.
[26] J.J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Trans. Syst. Man Cybern. Vol. 16, no. 1, pp. 122–128, 1986.
[27] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition,” In Evolutionary computation, 2007. CEC 2007. IEEE Congress on, pp. 4661–4667, 25–28 September, 2007.
[28] D. Simon, “Biogeography-based optimization,” IEEE transactions on evolutionary computation, vol. 12, no. 6, pp. 702–713, 2008.
[29] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” European journal of operational research, vol. 185, no. 3, pp. 1155-1173, 2008.
[30] L. A. Montestruque and P. J.  Antsaklis, “State and output feedback control in model-based networked control systems,” In Decision and Control, Proceedings of the 41st IEEE Conference on, Vol. 2, pp. 1620-1625, 2002.
[31] L. A. Montestruque and P. J.  Antsaklis, “Model-based networked control systems: stability,” ISIS Technical Report ISIS-2002-001. University of Notre Dame, www. nd. edu/~ isis, 2002.
[32] M.A. Ahmadi, M. Ebadi, A. Shokrollahi and S.M.J. Majidi, “Evolving artificial neu-ral network and imperialist competitive algorithm for prediction oil flow rate,” Appl. Soft Comput. Vol. 13, no. 2, pp. 1085–1098, 2013.
[33] B. Subudhi and D. Jena,” Nonlinear system identification using memetic differential evolution trained neural networks,” Neurocomputing, vol. 74, no. 10, pp. 1696-1709, 2011.
[34] T. Matias, F. Souza, R. Araújo and C. H Antunes, “Learning of a single-hidden layer feedforward neural network using an optimized extreme learning machine,” Neurocomputing, vol. 129, pp. 428-436, 2014.
[35] M. C. VanDyke, J. L. Schwartz and C. D. Hall, “Unscented Kalman filtering for spacecraft attitude state and parameter estimation,” Advances in the Astronautical Sciences, vol. 118, no. 1, pp. 217-228, 2008.
[36] A. Kaur, Priyahansha, S. Kumari and T. Singh, “Position Control of Overhead Cranes Using fuzzy Controller,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 3, no.5, pp. 9341-9350, 2014.