انسداد میدان الکتریکی جانبی از نواحی درین و سورس جهت بهبود اثرات کانال کوتاه در افزاره Nano-SOI

نویسنده

دانشکده فنی و مهندسی شرق گیلان - دانشگاه گیلان - رودسر

چکیده

در این مقاله روشی جدید برای بهبود اثرات کانال کوتاه بدون پیچیدگی در فرآیند ساخت افزاره‌های سیلیسیم روی عایق در مقیاس نانو ارائه شده است. فکر اساسی در این مقاله تحقق اکسید U شکل با استفاده از ماده Si3N4 در داخل اکسید مدفون و ناحیه کانال است. مسیر میدان الکتریکی جانبی از سمت درین و سورس پس از برخورد به اکسید تعبیه شده منحرف شده و مقدار کمتری از خطوط میدان الکتریکی توانایی کافی برای عبور از اکسید و رسیدن به ناحیه کانال را پیدا می‌کنند. افزایش رسانش مؤثر حرارتی ساختار پیشنهادی توانایی مضاعفی به ساختار جدید جهت کار در دماهای بالاتر می‌دهد. مقایسه ساختار ارائه شده با افزاره مرسوم نشان می‌دهد که پارامترهای مهمی همچون اثرات کانال کوتاه، دمای شبکه، میدان الکتریکی، تحرک پذیری الکترون، کندوکتانس درین و جریان نشتی به‌طور موثری بهبود یافته است که نمایانگر برتری ساختار پیشنهادی است. ساختارهای تحت مطالعه در این مقاله با استفاده از نرم‌افزار ATLAS که خود یکی از محصولات تجاری SILVACO است شبیه‌سازی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Blockage of Lateral Electric Field from Source/Drain Regions to Improve Short Channel Effects in Nano-SOI device

نویسنده [English]

  • M. K. Anvarifard
Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar- Vajargah, Iran
چکیده [English]

This paper has presented a new method for the improvement of short channel effects with no complexity in the fabrication flow of Nanoscale silicon-on-insulator (SOI) devices. The basic idea in this paper is realization of a U-shaped oxide using Si3N4 material inside the buried oxide and channel region. The lateral electric field lines path from source/drain deviates after meeting with the embedded oxide. As a result, less electric field lines will get the ability to go through the oxide and to reach the channel region. A double ability is caused by increase in effective thermal conduction of the proposed structure in high temperature applications. A comparison between the proposed structure and conventional structure shows that the important parameters such as short channel effects, lattice temperature, electric field, electron mobility and drain conductance have been effectively improved promising the superiority of the proposed device. The structures under study in this paper have been simulated by ATLAS simulator which is one of the commercial products of SILVACO family.

کلیدواژه‌ها [English]

  • Nanoscale
  • Si3N4
  • short channel effects
  • electric field
[1] J.P. Colinge, Silicon-on-insulator Technology: Materials to VLSI, third ed., Kluwer Academic Publishers, 2004.
[2] E. Arnold, Silicon-on-insulator devices for high voltage and power IC applications, J. Electro Chem. Soc. vol. 141, no. 7, pp. 1983-1988, 1994.
[3] H. Aghababa, B. Ebrahimi, M. Saremi, V. Moalemi, B. Forouzandeh, G4-FET modeling for circuit simulation by adaptive neuro-fuzzy training systems, IEICE Electron. vol. 9, no. 10, pp. 881-887, 2012.
[4] S. Rajabi, M. Saremi, H. J. Barnaby, A. Edwards, M. N. Kozicki, M. Mitkova, D. Mahalanabis, Y. Gonsalez-Velo, A. Mahmud, Static impedance behavior of programmable metallization cells, Solid State Electron. vol. 106, pp. 27-33, 2015.
[5] Mohammad K. Anvarifard, Increase in the scattering of electric field lines in a new high voltage SOI MESFET, Superlattices Microstruct. vol. 97, pp. 15-27, 2016.
[6] J. Ervin, A. Balijepalli, P. Joshi, V. Kushner, J. Yang, T.J. Thornton, CMOS compatible SOI MESFETs with high breakdown voltage, IEEE Trans. Electron Devices, vol. 53, pp. 3129–3135, 2006.
[7] J. Ervin, A. Balijepalli, P. Joshi, V. Kushner, J. Yang, T.J. Thornton, CMOS compatible SOI MESFETs with high breakdown voltage, IEEE Trans. Electron Devices, vol. 53, pp. 3129–3135, 2006.
[8] M. Rahimian, Ali A. Orouji, A novel nanoscale MOSFET with modified buried layer for improving of AC performance and self-heating effect, Mater. Sci. Semicond. Process. vol. 15, pp. 445–454, 2012.
[9] M. Jagadesh Kumar, Anurag Chaudhry, Two-Dimensional Analytical Modeling of Fully Depleted DMG SOI MOSFET and Evidence for Diminished SCEs, IEEE Trans. Electron Dev. vol. 51, pp. 569-574, 2004.
[10] W. Long, H. Ou, J.-M. Kuo, and K. K. Chin, Dual material gate (DMG) field effect transistor, IEEE Trans. Electron Devices, vol. 46, pp. 865–870, 1999.
[11] Mohammad K. Anvarifard, Ali A. Orouji, Voltage difference engineering in SOI MOSFETs: A novel side gate device with improved electrical performance, Materials Science in Semiconductor Processing, vol. 16, pp. 1672-1678, 2013.
[12] M. Zareiee, A novel high performance nano-scale MOSFET by inserting Si3N4 layer in the channel, Superlattices and Microstructures, vol. 88, pp. 254-261, 2015.
[13] H. Shahnazarisani, S. Mohammadi, Simulation analysis of a novel fully depleted SOI MOSFET: Electrical and thermal performance improvement through trapezoidally doped channel and silicon–nitride buried insulator, Physica E: Low-dimensional Systems and Nanostructures, Vol. 69, pp. 27-33, 2015
[14] مهسا مهراد، میثم زارعی، «ارائه ساختار نوین ترانزیستور اثر میدان سیلیسیم روی عایق دو گیتی با پنجره اکسید در درین گسترده شده بهمنظور کاربرد در تکنولوژی نانو»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحات 80-86، 1396.
[15] حامد نجفعلی زاده، علی لصغر اروجی، « طراحی ساختاری از ترانزیستور ماسفت دوگیتی با به کارگیری دو ماده، اکسید هافنیوم  HFO­2 و سیلیسیم ژرمانیوم SiGe در کانالی از جنس سیلیسیم DM-DG»، جلد 47، شماره 1، صفحات 79-84، 1396.
[16] ATLAS User’s Manual: 2-D Device Simulator, SILVACO International, Santa Clara, CA, USA, 2012.
[17] J. Chen, J. Luo, Q. Wu, Z. Chai, T. Yu, Y. Dong, and X. Wang, A tunnel diode body contact structure to suppress the floating-body effect in partially depleted SOI MOSFETs, IEEE Electron Device Lett., vol. 32, no. 10, pp. 1346–1348, 2011.