روشی جدید برای طراحی ریزتحریک‌کننده‌های عصبی ایمن

نویسندگان

1 فارغ التحصیل

2 مربی

3 عضو هیئت علمی دانشگاه فردوسی مشهد

چکیده

چکیده: توسعه و پیشرفت ادوات قابل کاشت پزشکی در سال­های اخیر، نقش بزرگی در درمان بیماری­ها و ناتوانی­ها داشته است. پروتز شنوایی، ضربان­ساز قلب و پروتز چشمی ازجمله ادوات قابل کاشتی هستند که در سال­های اخیر پیشرفت فراوانی داشته­اند. تحریک الکتریکی عملکردی (FES) یا تحریک عصبی عملکردی (FNS)، هدف مشترک این ادوات برای بازگرداندن قابلیت ازدست‌رفته‌ی بافت­های آسیب‌دیده است. تحریک الکتریکی بر پایه تزریق بار به بافت، استخراج پتانسیل­های عمل و برانگیختگی پاسخ­های عصبی استوار است.یکی از مهم­ترین ملزومات یک تحریک ایمن، تحریک بار متعادل است. در این پژوهش، یک تکنیک جدید برای دست­یابی به تعادل بار در تحریک الکتریکی عملکردی پیشنهاد شده که بر پایه شکل موج دوفازه ­نامتعادل است. در این روش مقدار ولتاژ الکترود و خروج یا عدم خروج آن از بازه­ی ایمن به‌عنوان معیاری برای تنظیم مقدار جریان تزریقی فاز بعد استفاده می­شود. این روش بر روی یک ریزتحریک­کننده­ی رایج اعمال شده است. نتایج شبیه­سازی­ها در تکنولوژی mmCMOS HV 18/0، قابلیت تحقق و کم­توان بودن این روش را تأیید می­کنند. توان مصرفی مدار متعادل­سازی بار در حدود µW 517/2 است که حدود 4/3% توان مصرفی کل سیستم تحریک­کننده را شامل می­شود.

کلیدواژه‌ها


[1]K. W. Horch and G. S. Dhillon, Neuroprosthetics: theory and practice: World Scientific, 2004.
[2]M. Ghovanloo and K. Najafi, “A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture,” IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol. 15, no. 3, pp. 449-457, 2007.
[3]R. A. Blum, J. D. Ross, E. A. Brown and S. P. DeWeerth, “An integrated system for simultaneous, multichannel neuronal stimulation and recording,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 12, pp. 2608-2618, 2007.
[4]S. K. Kelly and J. L. Wyatt, “A power-efficient neural tissue stimulator with energy recovery,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 1, pp. 20-29, 2011.
[5]M. Schwarz and M. Maschmann, “Area saving stimulator cells for multielectrode arrays featuring adaptive waveform generation and monitoring,”26th Annual International Conference of the Engineering in Medicine and Biology Society IEEE,. IEMBS '04. , pp.4314,4317, 1-5 Sept. 2004.
[6]F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L. Carlen and R. Genov, “The 128-channel fully differential digital integrated neural recording and stimulation interface,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 149-161, 2010.
[7]L. S. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas and H. Naas, “A very low-power CMOS mixed-signal IC for implantable pacemaker applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2446-2456, 2004.
[8]M. Ghovanloo, “Switched-capacitor based implantable low-power wireless microstimulating systems,”IEEE International Symposium on Circuits and Systems, ISCAS '06, pp.4 pp., 21-24 May 2006.
[9]X. Liu, A. Demosthenous and N. Donaldson, “A fully integrated fail-safe stimulator output stage dedicated to FES stimulation,”IEEE International Symposium on Circuits and Systems, ISCAS '07, pp.2076,2079, 27-30 May 2007.
[10]M. Ortmanns, A. Rocke, M. Gehrke and H.-J. Tiedtke, “A 232-channel epiretinal stimulator ASIC,” IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2946-2959, 2007.
[11]P. R. Singh, L. Wentai, M. Sivaprakasam, M. S. Humayun and J. D. Weiland, “A matched biphasic microstimulator for an implantable retinal prosthetic device,” IEEE International Symposium on Circuits and Systems, ISCAS '04. pp.IV,1-4 Vol.4, 23-26 May 2004.
[12]M. Sivaprakasam, W. Liu, M. S. Humayun and J. D. Weiland, “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763-771, 2005.
[13]K. Sooksood, T. Stieglitz and M. Ortmanns, “An active approach for charge balancing in functional electrical stimulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 162-170, 2010.
[14]G. Gudnason, E. Bruun and M. Haugland, “A chip for an implantable neural stimulator,” Analog Integrated Circuits and Signal Processing, vol. 22, no. 1, pp. 81-89, 2000.
[15]J. Hu and C. Gordon, “A general adaptive charge-balancing stimulator,” 51st Midwest Symposium on Circuits and Systems, MWSCAS '08. , pp.678,681, 10-13 Aug. 2008.
[16]E. K. Lee and A. Lam, “A matching technique for biphasic stimulation pulse,”  IEEE International Symposium on Circuits and Systems, ISCAS '07. , pp.817,820, 27-30 May 2007.
[17]S. Carroll, C. Cooper, D. Brown, G. Sormann, S. Flood and M. Denison, “Australian experience with the Freehand System for restoring grasp in quadriplegia,” The Australian and New Zealand journal of surgery, vol. 70, no. 8, pp. 563-568, 2000.
[18]N. Laotaveerungrueng, A High-Voltage, High-Current Multi-Channel Arbitrary Waveform Generator ASIC for Neural Interface and MEMS Applications, Ph.D. dissertation, Dept. Elec. Eng., Case Western Reserve University, 2011.
[19]A. R. Sauter, M. S. Dodgson, H. Kalvøy, S. Grimnes, A. Stubhaug and Ø. Klaastad, “Current threshold for nerve stimulation depends on electrical impedance of the tissue: a study of ultrasound-guided electrical nerve stimulation of the median nerve,” Anesthesia & Analgesia, vol. 108, no. 4, pp. 1338-1343, 2009.
[20]X. Yuan, T. Shimizu, U. Mahalingam, J. S. Brown, K. Z. Habib, D. G. Tekleab, T.-C. Su, S. Satadru, C. Olsen and H. W. Lee, “Transistor mismatch properties in deep-submicrometer CMOS technologies,” IEEE Transactions on Electron Devices , vol. 58, no. 2, pp. 335-342, 2011.
[21]D. R. Merrill, M. Bikson and J. G. Jefferys, “Electrical stimulation of excitable tissue: design of efficacious and safe protocols,” Journal of neuroscience methods, vol. 141, no. 2, pp. 171-198, 2005.
[22]X. Fang, J. Wills, J. Granacki, J. LaCoss, A. Arakelian and J. Weiland, “Novel charge-metering stimulus amplifier for biomimetic implantable prosthesis,” IEEE International Symposium on Circuits and Systems, ISCAS '07. , pp.569,572, 27-30 May 2007.
[23]J.-J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation,” IEEE Transactions on Biomedical Circuits and Systems , vol. 1, no. 3, pp. 172-183, 2007.
[24]X. Liu, A. Demosthenous and N. Donaldson, “An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 3, pp. 231-244, 2008.
[25]S. Guo and H. Lee, “Biphasic-current-pulse self-calibration techniques for monopolar current stimulation,” IEEE Biomedical Circuits and Systems Conference, BioCAS '09 , pp.61,64, 26-28 Nov. 2009.
[26]C. Hosung, T. Lehmann and Y. Yuanyuan, “Implantable stimulator for bipolar stimulation without charge balancing circuits,” IEEE Biomedical Circuits and Systems Conference, BioCAS '10 , pp.202,205, 3-5 Nov. 2010.
[27]S. Nag, J. Xiaofeng, N. Thakor and D. Sharma, “Flexible Charge Balanced Stimulator With 5.6 fC Accuracy for 140 nC Injections,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 3, pp. 266-275, 2013.
[28]C. Hosung, Y. Yuanyuan and T. Lehmann, “Safety Ensuring Retinal Prosthesis With Precise Charge Balance and Low Power Consumption,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 1, pp. 108-118, 2014.